This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.
We aim to investigate the kinetics of the R to T quaternary structure transition of hemoglobin (Hb) using the technique of time-resolved wide-angle X-ray scattering (TR-WAXS). When transporting oxygen from the lungs to the tissues, Hb switches from a high-affinity R to a low-affinity T conformation, thereby enabling it to deliver O2 to the tissues with very high efficiency. This structure-function relationship is perhaps the best-known example of allosteric regulation in proteins. The structure of both states are well known by static crystallography, but the rate of this structure transition in still being debated. Prior time-resolved spectroscopic studies of this structure transition are based on local spectroscopic markers and provide only indirect information about the overall protein conformation.
We aim to use the TR-WAXS pattern of Hb as a 'fingerprint' that can be matched to known X-ray structures and can therefore track the time-dependent population of the T and R states. The protein sample, ~1-mM solution of carboxy hemoglobin (HbCO), will be sealed in an X-ray capillary and mounted on a motorized linear stage whose translation is synchronized to the laser and X-ray pulses. We use CO as a surrogate for O2 because it can be photolyzed with high efficiency. The laser pulse (pump) is followed by an X-ray pulse (probe) that is isolated from the synchrotron pulse train by a high-speed chopper. The time delay between the pump and probe pulses is set by a programmable time delay, and the wide-angle X-ray scattering pattern is recorded by an area detector. Because the CO binds to the Hb reversibly, the pump-probe cycle can be repeated thousand of times without degrading the sample. We will obtain TR-WAXS patterns over approximately 9 decades of time. We will also vary the photolysis intensity to assess the extent to which the rate of the quaternary structure transition is sensitive to the degree of deligation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR007707-16A1
Application #
7726026
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2008-09-01
Project End
2009-07-31
Budget Start
2008-09-01
Budget End
2009-07-31
Support Year
16
Fiscal Year
2008
Total Cost
$29,659
Indirect Cost
Name
University of Chicago
Department
Miscellaneous
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Weingarten, Adam S; Dannenhoffer, Adam J; Kazantsev, Roman V et al. (2018) Chromophore Dipole Directs Morphology and Photocatalytic Hydrogen Generation. J Am Chem Soc 140:4965-4968
Yang, Cheolhee; Choi, Minseo; Kim, Jong Goo et al. (2018) Protein Structural Dynamics of Wild-Type and Mutant Homodimeric Hemoglobin Studied by Time-Resolved X-Ray Solution Scattering. Int J Mol Sci 19:
Kazantsev, Roman V; Dannenhoffer, Adam J; Weingarten, Adam S et al. (2017) Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds. J Am Chem Soc 139:6120-6127
Fournier, Bertrand; Sokolow, Jesse; Coppens, Philip (2016) Analysis of multicrystal pump-probe data sets. II. Scaling of ratio data sets. Acta Crystallogr A Found Adv 72:250-60
Cho, Hyun Sun; Schotte, Friedrich; Dashdorj, Naranbaatar et al. (2016) Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering. J Am Chem Soc 138:8815-23
Pande, Kanupriya; Hutchison, Christopher D M; Groenhof, Gerrit et al. (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725-9
Coppens, Philip; Fournier, Bertrand (2015) New methods in time-resolved Laue pump-probe crystallography at synchrotron sources. J Synchrotron Radiat 22:280-7
Weingarten, Adam S; Kazantsev, Roman V; Palmer, Liam C et al. (2015) Supramolecular Packing Controls H? Photocatalysis in Chromophore Amphiphile Hydrogels. J Am Chem Soc 137:15241-6
Pfoh, Roland; Pai, Emil F; Saridakis, Vivian (2015) Nicotinamide mononucleotide adenylyltransferase displays alternate binding modes for nicotinamide nucleotides. Acta Crystallogr D Biol Crystallogr 71:2032-9
Mariette, Céline; Guérin, Laurent; Rabiller, Philippe et al. (2015) The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds. Z Kristallogr Cryst Mater 230:5-11

Showing the most recent 10 out of 120 publications