This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Polysaccharides comprise a distinct class of biopolymers produced universally among the living organisms. They exhibit a wide variety of unique structures leading to sheets and spirals of single, double and triple helices. Many polysaccharides are water soluble and are capable of significantly altering the solution properties such as texture, gelation and viscosity, to name a few. In this regard, insights about of polysaccharides architecture aid in understanding and predicting their functionality. Hence, elucidation of polysaccharide structures and their interactions with solvent and solute molecules as well as the synergistic interactions in mixed polysaccharide systems provides insights about their structure-function relationships towards developing biopolymers with improved functionality. In this regard, the current proposal is about determining the molecular architecture of a number of biologically important and industrially useful polysaccharides. The study includes the samples from algal (iota, kappa and lambda carrageenans);bacterial (gellan analog and cepacian);wood (galactoglucomannan) and binary system (acetan: glucomannan, corn arabinoxylan: glucomannan). Further, our recent research demonstrates that several drug molecules, nutraceuticals or vitamins can be embedded in the crystalline iota-carrageenan network leading to novel polymeric cocrystals. In order to gain knowledge about the intrinsic interactions between the small molecules with the polysaccharide backbone, so as to understanding the release profile of the small molecules, our second aim is centered on structural characterization of several polymeric cocrystals utilizing FDA approved food polysaccharides combined with small drug molecules as well as nutraceuticals. It is hoped that these results would be helpful in understanding the polysaccharide:drug interactions towards the development of controlled release vehicles.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR007707-18
Application #
8171984
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2010-08-01
Project End
2011-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
18
Fiscal Year
2010
Total Cost
$3,649
Indirect Cost
Name
University of Chicago
Department
Miscellaneous
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Weingarten, Adam S; Dannenhoffer, Adam J; Kazantsev, Roman V et al. (2018) Chromophore Dipole Directs Morphology and Photocatalytic Hydrogen Generation. J Am Chem Soc 140:4965-4968
Yang, Cheolhee; Choi, Minseo; Kim, Jong Goo et al. (2018) Protein Structural Dynamics of Wild-Type and Mutant Homodimeric Hemoglobin Studied by Time-Resolved X-Ray Solution Scattering. Int J Mol Sci 19:
Kazantsev, Roman V; Dannenhoffer, Adam J; Weingarten, Adam S et al. (2017) Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds. J Am Chem Soc 139:6120-6127
Fournier, Bertrand; Sokolow, Jesse; Coppens, Philip (2016) Analysis of multicrystal pump-probe data sets. II. Scaling of ratio data sets. Acta Crystallogr A Found Adv 72:250-60
Cho, Hyun Sun; Schotte, Friedrich; Dashdorj, Naranbaatar et al. (2016) Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering. J Am Chem Soc 138:8815-23
Pande, Kanupriya; Hutchison, Christopher D M; Groenhof, Gerrit et al. (2016) Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725-9
Liu, Yue; Sheng, Ju; Fokine, Andrei et al. (2015) Structure and inhibition of EV-D68, a virus that causes respiratory illness in children. Science 347:71-4
Coppens, Philip; Fournier, Bertrand (2015) On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources. Struct Dyn 2:064101
Sampath, Sujatha; Yarger, Jeffery L (2015) Structural hysteresis in dragline spider silks induced by supercontraction: An x-ray fiber micro-diffraction study. RSC Adv 5:1462-1473
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358

Showing the most recent 10 out of 120 publications