This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Biology and biomedical research is very data-rich with community databases (e.g. Protein Data Bank) at several different scales. Furthermore, data are being generated at increasingly faster rates via high through-put technologies, such as micro array data, high-resolution electron microscopes, and high-resolution magnetic resonance imaging scanners. The sequence of steps needed to complete biological and biomedical research or analysis of experimental data spans from taking raw data on a specialized instrument to depositing annotated data in community databases. The complete workflow requires a scientist to bring together data from disparate resources, compare experiment with simulation, analyze data, visualize it, and then repeat some portions of this cycle. The emerging IT support paradigm for this merges grid services, workflows and data technologies. Grid computing is rapidly gaining acceptance as a routine way to transparently access computational power and datasets for biological and biomedical informatics applications. These techniques are being employed in academia as well as in industry. However, enabling biomedical codes to run in such an environment requires so-called ?grid-enabling? of such codes and the associated data repositories. This process of bringing software programs, databases and instruments together to then facilitate a workflow generally involves development of a layer of software. We refer to this grid-enabling step as the ?wrapping? of codes and databases. The effort in this Core Technological Research and Development project focuses on examining the grid computing requirements of several exemplary biomedical research project activities, and defining and implementing standard interfaces with appropriate security and access logging by leveraging emerging grid practice and experience. Once grid-enabled, such codes can more easily be combined together to create biomedical analysis pipelines, or workflows.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008605-13
Application #
7358657
Study Section
Special Emphasis Panel (ZRG1-SSS-9 (40))
Project Start
2006-05-01
Project End
2007-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
13
Fiscal Year
2006
Total Cost
$147,314
Indirect Cost
Name
University of California San Diego
Department
Anatomy/Cell Biology
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Pantoja, Joe Luis; Morgan, Ashley E; Grossi, Eugene A et al. (2017) Undersized Mitral Annuloplasty Increases Strain in the Proximal Lateral Left Ventricular Wall. Ann Thorac Surg 103:820-827
Morgan, Ashley E; Wozniak, Curtis J; Gulati, Sarthak et al. (2017) Association of Uneven MitraClip Application and Leaflet Stress in a Finite Element Model. JAMA Surg 152:111-114
Ge, Liang; Wu, Yife; Soleimani, Mehrdad et al. (2016) Moderate Ischemic Mitral Regurgitation After Posterolateral Myocardial Infarction in Sheep Alters Left Ventricular Shear but Not Normal Strain in the Infarct and Infarct Borderzone. Ann Thorac Surg 101:1691-9
Morgan, Ashley E; Pantoja, Joe Luis; Weinsaft, Jonathan et al. (2016) Finite Element Modeling of Mitral Valve Repair. J Biomech Eng 138:021009
Morgan, Ashley E; Pantoja, Joe L; Grossi, Eugene A et al. (2016) Neochord placement versus triangular resection in mitral valve repair: A finite element model. J Surg Res 206:98-105
Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth et al. (2016) Energy Minimization of Discrete Protein Titration State Models Using Graph Theory. J Phys Chem B 120:8354-60
Bucero, Marta Abril; Bajaj, Chandrajit; Mourrain, Bernard (2016) On the construction of general cubature formula by flat extensions. Linear Algebra Appl 502:104-125
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A et al. (2016) Disk Density Tuning of a Maximal Random Packing. Comput Graph Forum 35:259-269
Yang, Pei-Chi; Boras, Britton W; Jeng, Mao-Tsuen et al. (2016) A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation. PLoS Comput Biol 12:e1005005
Watson, Shana R; Liu, Piaomu; Peña, Edsel A et al. (2016) Comparison of Aortic Collagen Fiber Angle Distribution in Mouse Models of Atherosclerosis Using Second-Harmonic Generation (SHG) Microscopy. Microsc Microanal 22:55-62

Showing the most recent 10 out of 270 publications