This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Wide-angle x-ray scattering from proteins in solution (WAXS) provides a set of capabilities for analysis of the structure of proteins not accessible by other methods. Our experiments at BioCAT are designed to develop those capabilities. We are currently pursuing three avenues of research: (i) Assignment of fold on the basis of WAXS patterns: We are compiling a database of WAXS patterns from proteins of known and unknown folds with the goal of using it as a basis for fold assignment for proteins that cannot be crystallized. WAXS data from over 100 proteins of known structure have been collected thusfar. (ii) Protein-ligand interactions: WAXS provides the capability of studying structural changes in proteins induced by binding of small molecule ligands. Ligand-induced structural changes are too large to be accommodated within a crystal lattice, making the development of alternative approaches critical. We have collected data on 10 proteins in the presence and absence of small molecule ligands, and carried out detailed analysis of the structural changes induced for 5 of these systems. (iii) Protein breathing: In comparing WAXS patterns from dilute protein solutions with those from concentrated solutions, we discovered systematic differences that could be attributed to structural fluctuations that are much greater in dilute solution. Detailed analysis of these patterns is being used to obtain a quantitative measure of the scale of the fluctuations. Suppression of these fluctuations in concentrated solution appears to be due to molecular crowding, a phenomena that promotes protein stability in the cell cytoplasm.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-11
Application #
7369141
Study Section
Special Emphasis Panel (ZRG1-BBCA (40))
Project Start
2006-04-01
Project End
2007-03-31
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
11
Fiscal Year
2006
Total Cost
$26,670
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V et al. (2014) Modulation of frustration in folding by sequence permutation. Proc Natl Acad Sci U S A 111:10562-7
Jiao, Lianying; Ouyang, Songying; Shaw, Neil et al. (2014) Mechanism of the Rpn13-induced activation of Uch37. Protein Cell 5:616-30

Showing the most recent 10 out of 100 publications