This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat to beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca2+ ions at a longer sarcomere length (SL); this is commonly referred to as myofilament length dependent activation. Over the past decade a unifying hypothesis has gained acceptance stating that myofilament length dependent activation is caused by the reduction in thick to thin filament separation upon an increase in SL which, in turn, is hypothesized to increase the probability of cross-bridge formation. Although earlier experimental data by others supported this theory, we have recently completed a comprehensive series of experiments that show that variation of inter-filament spacing in a relaxed muscle is not sufficient to explain SL dependent myofilament activation. Hence, it is still not known in muscle how the information concerning SL is transduced by the contractile apparatus. Accordingly, the overall goal of our research is to elucidate the molecular mechanism(s) that underlie myofilament length dependent activation, to that end we employ X-ray diffraction to understand the structural interaction of myofilament proteins during stretch and how that might impact force production.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-13
Application #
7722741
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2008-04-01
Project End
2008-12-31
Budget Start
2008-04-01
Budget End
2008-12-31
Support Year
13
Fiscal Year
2008
Total Cost
$50,585
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D et al. (2014) Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium. J Biol Chem 289:8818-27
Poor, Catherine B; Wegner, Seraphine V; Li, Haoran et al. (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci U S A 111:4043-8

Showing the most recent 10 out of 100 publications