This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Previous workers have proposed high resolution models for the docking of the myosin heads on actin on the basis of combined crystallographic and electron microscopy data from isolated proteins (Mendelson and Morris, 1997 PNAS 94:8533;Holmes et al. 2003 Nature 425:423). Another group also claims that the first step in the force generation is associated with a rearrangement of the myosin-actin interface, followed by the lever arm tilt, and that it is temperature-dependent (Ferenczi et al. 2005 Structure 13:131). The goal of this work is to collect small angle X-ray scattering (SAXS) data from muscle that may be used to check in vivo the prediction of the models for the acto-myosin docking and whether there is a temperature-dependent rearrangement of the myosin-actin interface. For this purpose, the most sensitive reflection in the pattern is the 2.73nm meridional reflection arising from the regular repeat of the actin monomers along the actin filament, which changes its intensity upon myosin attachment to actin. Preliminary modelling has shown that the reflection intensity is little influenced by the lever arm tilt but it is highly sensitive to the relative axial position of actin and catalytic domain of myosin. 2D patterns will be taken from muscle at rest and during isometric contraction at different temperatures (4 to 17?C) up to 0.5 nm-1 in reciprocal space, in order to collect the actin-based 2.73nm meridional reflection and the 5.9nm and 5.1nm layer lines, also influenced by myosin attachment to actin.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-14
Application #
7954924
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2009-01-01
Project End
2009-12-31
Budget Start
2009-01-01
Budget End
2009-12-31
Support Year
14
Fiscal Year
2009
Total Cost
$19,588
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D et al. (2014) Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium. J Biol Chem 289:8818-27
Poor, Catherine B; Wegner, Seraphine V; Li, Haoran et al. (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci U S A 111:4043-8

Showing the most recent 10 out of 100 publications