This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Human beta-amyloid precursor protein (APP) transgenic (Tg) mice is a well established model for Alzheimer's disease. It is widely used for pathology studies, mutagenesis experiments and screening of therapeutic agents. APP Tg mice with high beta-amyloid levels in the brain show synapse loss, behavioral changes, and synaptic transmission deficit. Recently, involvement of the redox active metals in the pathology of Alzheimer's disease has been identified. We hypothesize that overexpression of APP in Tg mice is affecting the metal homeostasis and, thus, the metal distributions in brain. Micro-focus X-ray fluorescent imaging is the best technique to visualize the Fe, Cu, Zn distributions in the hippocampus of human APP Tg mice and healthy (non transgenic) control. We expect to detect increased Cu and Zn concentrations in plaques. Cu and Fe micro-XANES will be attempted on plaques and healthy tissues to monitor possible differences in the metal oxidation states. Work on the mice model has enormous advantages compared to postmortem analysis of brain tissues of Alzheimer's patients. It allows a high degree of interference, such as monitoring at different points in time as the disease progresses, during administration of different therapeutic agents or as a consequence of specific mutations. In this proposal we will analyze brains of mice at two different ages: before and after plaques formation. The proposed study will help to uncover the involvement of metal ions in the onset of Alzheimer's disease.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-15
Application #
8168647
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2010-01-01
Project End
2010-12-31
Budget Start
2010-01-01
Budget End
2010-12-31
Support Year
15
Fiscal Year
2010
Total Cost
$16,209
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Nobrega, R Paul; Arora, Karunesh; Kathuria, Sagar V et al. (2014) Modulation of frustration in folding by sequence permutation. Proc Natl Acad Sci U S A 111:10562-7
Jiao, Lianying; Ouyang, Songying; Shaw, Neil et al. (2014) Mechanism of the Rpn13-induced activation of Uch37. Protein Cell 5:616-30

Showing the most recent 10 out of 100 publications