A number of computational models have been developed to account for the visuosensory response properties of MST neurons during the presentation of optic flow field stimuli. We have now collected data that samples the stimulus space at a higher resolution to determine whether MST neurons are sensitive to subtle changes which might indicate a shift in the heading of self movement. These data are being compared to the output of current models about MST response mechanisms (implemented at Bochum) to test those models on data sets that were not previously available. Our goal is to use the results of these comparisons to guide future neurophysiologic experiments, initially using purely visual stimuli, and later integrating non-visual heading cues introduced on the two-dimensional sled. During the last year, we recorded the responses of MST neurons during self-movement with and without optic flow displays. These data provided a basis for developing neural models of sensory integration for self-movement perception and spatial orientation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR009283-07
Application #
6339388
Study Section
Project Start
2000-08-01
Project End
2001-07-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
7
Fiscal Year
2000
Total Cost
$37,685
Indirect Cost
Name
University of Rochester
Department
Type
DUNS #
208469486
City
Rochester
State
NY
Country
United States
Zip Code
14627
Rothkopf, Constantin A; Ballard, Dana H (2013) Modular inverse reinforcement learning for visuomotor behavior. Biol Cybern 107:477-90
Fernandez, Roberto; Duffy, Charles J (2012) Early Alzheimer's disease blocks responses to accelerating self-movement. Neurobiol Aging 33:2551-60
Velarde, Carla; Perelstein, Elizabeth; Ressmann, Wendy et al. (2012) Independent deficits of visual word and motion processing in aging and early Alzheimer's disease. J Alzheimers Dis 31:613-21
Rothkopf, Constantin A; Ballard, Dana H (2010) Credit assignment in multiple goal embodied visuomotor behavior. Front Psychol 1:173
Huxlin, Krystel R; Martin, Tim; Kelly, Kristin et al. (2009) Perceptual relearning of complex visual motion after V1 damage in humans. J Neurosci 29:3981-91
Rothkopf, Constantin A; Ballard, Dana H (2009) Image statistics at the point of gaze during human navigation. Vis Neurosci 26:81-92
Jovancevic-Misic, Jelena; Hayhoe, Mary (2009) Adaptive gaze control in natural environments. J Neurosci 29:6234-8
Kavcic, Voyko; Ni, Hongyan; Zhu, Tong et al. (2008) White matter integrity linked to functional impairments in aging and early Alzheimer's disease. Alzheimers Dement 4:381-9
Droll, Jason A; Hayhoe, Mary M; Triesch, Jochen et al. (2005) Task demands control acquisition and storage of visual information. J Exp Psychol Hum Percept Perform 31:1416-38
Bayliss, Jessica D; Inverso, Samuel A; Tentler, Aleksey (2004) Changing the P300 brain computer interface. Cyberpsychol Behav 7:694-704

Showing the most recent 10 out of 28 publications