This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The goal of this research is to develop ways of visualizing white matter regions in the brain which is in conjunction but separate from DTI or diffusion tensor imaging. Since DTI may have drop-outs, this method of mapping pooling of white matter protons provides a secondary means of showing where the white matter is which can be overlaid onto DTI maps for better understanding of the structure of the white matter maps. This pooling sequence uses rapid MRI for enhancing water hydrogen protons which are near or adjacent to white matter protons. The sequence has been written and preliminary data shows celar white matter structures different from those seen from DTI. The method, called WIMP, or White Matter Protons uses a spiral sequence and can be expanded to single- or multi-shot methods. One advantage of the method is that it minimizes the SAR values at high-fields which is crucial for studies at very high fields such as our 7T whole-body system. The bound water fractions can be seen without MT effects or prepulses. It displays true proton dilution principles. The results give excellent gray-white matter conspicuity with a wealth of new information regarding the bound water fractions.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR009784-13
Application #
7601900
Study Section
Special Emphasis Panel (ZRG1-SBIB-F (40))
Project Start
2007-06-01
Project End
2008-05-31
Budget Start
2007-06-01
Budget End
2008-05-31
Support Year
13
Fiscal Year
2007
Total Cost
$17,271
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Maclaren, Julian; Aksoy, Murat; Ooi, Melvyn B et al. (2018) Prospective motion correction using coil-mounted cameras: Cross-calibration considerations. Magn Reson Med 79:1911-1921
Guo, Jia; Holdsworth, Samantha J; Fan, Audrey P et al. (2018) Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: A simulation and in vivo study. J Magn Reson Imaging 47:1119-1132
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian et al. (2017) T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 77:180-195
Lai, Lillian M; Cheng, Joseph Y; Alley, Marcus T et al. (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45:1407-1418
Taviani, Valentina; Alley, Marcus T; Banerjee, Suchandrima et al. (2017) High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 77:209-220
Uecker, Martin; Lustig, Michael (2017) Estimating absolute-phase maps using ESPIRiT and virtual conjugate coils. Magn Reson Med 77:1201-1207
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Aksoy, Murat; Maclaren, Julian; Bammer, Roland (2017) Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Magn Reson Imaging 39:44-52
Suh, Ga-Young; Choi, Gilwoo; Herfkens, Robert J et al. (2016) Three-Dimensional Modeling Analysis of Visceral Arteries and Kidneys during Respiration. Ann Vasc Surg 34:250-60
Ong, Frank; Lustig, Michael (2016) Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition. IEEE J Sel Top Signal Process 10:672-687

Showing the most recent 10 out of 446 publications