This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.The APOE 4 allele is a major genetic risk factor Alzheimer's Disease (AD). Furthermore, over 25% of the general population are 4 carriers. To enhance early identification of AD, studies are assessing the impact of 4 on memory in older nondemented carriers. The literature is inconsistent and few studies have examined the impact of APOE 4 in older professionals performing complex 'real-world' tasks, such as flying an airplane. Our recent structural MRI study of 45 aviators found that 4 carriers had poorer memory performance when learning a word list (Rey AVLT). Interestingly, no 4-related differences in hippocampal volume were observed. The fMRI study underway aims to shed light on the neural mechanisms associated with the poorer word list learning observed in 4 carriers. We have adapted the Rey AVLT to a visually presented format for fMRI. We predict that 4 carriers will show overall lower activation than non-carriers during memory encoding in MTL regions (specifically the hippocampus), prefrontal, parietal and anterior cingulate regions. We are also testing spatial navigational memory, as navigation is crucial in aviation. Here, we are presenting a survey and route virtual reality task developed by Shelton and Gabrieli (2002; 2005). We will assess the extent to which 4 carriers with advanced FAA proficiency ratings show preserved activation during navigational memory encoding (APOE x Expertise interaction). Forty actively flying, FAA medically certified aviators with a range of proficiency ratings are being recruited for the study.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR009784-14
Application #
7722885
Study Section
Special Emphasis Panel (ZRG1-SBIB-F (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
14
Fiscal Year
2008
Total Cost
$5,604
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Maclaren, Julian; Aksoy, Murat; Ooi, Melvyn B et al. (2018) Prospective motion correction using coil-mounted cameras: Cross-calibration considerations. Magn Reson Med 79:1911-1921
Guo, Jia; Holdsworth, Samantha J; Fan, Audrey P et al. (2018) Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: A simulation and in vivo study. J Magn Reson Imaging 47:1119-1132
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Aksoy, Murat; Maclaren, Julian; Bammer, Roland (2017) Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Magn Reson Imaging 39:44-52
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian et al. (2017) T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 77:180-195
Lai, Lillian M; Cheng, Joseph Y; Alley, Marcus T et al. (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45:1407-1418
Taviani, Valentina; Alley, Marcus T; Banerjee, Suchandrima et al. (2017) High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 77:209-220
Uecker, Martin; Lustig, Michael (2017) Estimating absolute-phase maps using ESPIRiT and virtual conjugate coils. Magn Reson Med 77:1201-1207
Bian, W; Tranvinh, E; Tourdias, T et al. (2016) In Vivo 7T MR Quantitative Susceptibility Mapping Reveals Opposite Susceptibility Contrast between Cortical and White Matter Lesions in Multiple Sclerosis. AJNR Am J Neuroradiol 37:1808-1815
Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying et al. (2016) Trade-off between angular and spatial resolutions in in vivo fiber tractography. Neuroimage 129:117-132

Showing the most recent 10 out of 446 publications