This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The goal of this research continues to refine and improve the methodology of diffusion tensor imaging (DTI) at very high fields (3T and 7T) for the investigators and collaborators on the P41 RR09784 """"""""Center for Advanced MR Technology at Stanford"""""""" effort. Preliminary studies from a variety of studies suggest that DTI may predict the cognitive and motor performances of a patient from scans requiring several minutes. Diffusion is measured along at least six non-collinear directions. For each gradient direction, typically four images were acquired and averaged. Two images with no diffusion weighting (b = 0s/mm2) are acquired and a set of Inversion Recovery (IR) images for CSF nulling are acquired with b = 0s/mm2;these images were used to unwarp the diffusion weighted images, which resulted in a more robust unwarping than using the non-IR b=0 images. The development of SENSE and more robust parallel imaging sequences and post-processing methods has accelerated the use of high fields for diffusion studies. Issues regarding the opimal protocol and set of sequence parameters needed for various diffusion studies are under investigation, which includes more rapid protocols for the assessment of stroke and more high resolution protocols for diffusion tensor imaging of white matter tracts. The effort is being translated from 3T to newer field field studies at 7T.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR009784-16
Application #
8169831
Study Section
Special Emphasis Panel (ZRG1-SBIB-U (40))
Project Start
2010-07-01
Project End
2011-03-31
Budget Start
2010-07-01
Budget End
2011-03-31
Support Year
16
Fiscal Year
2010
Total Cost
$37,000
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Maclaren, Julian; Aksoy, Murat; Ooi, Melvyn B et al. (2018) Prospective motion correction using coil-mounted cameras: Cross-calibration considerations. Magn Reson Med 79:1911-1921
Guo, Jia; Holdsworth, Samantha J; Fan, Audrey P et al. (2018) Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: A simulation and in vivo study. J Magn Reson Imaging 47:1119-1132
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian et al. (2017) T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 77:180-195
Lai, Lillian M; Cheng, Joseph Y; Alley, Marcus T et al. (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45:1407-1418
Taviani, Valentina; Alley, Marcus T; Banerjee, Suchandrima et al. (2017) High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 77:209-220
Uecker, Martin; Lustig, Michael (2017) Estimating absolute-phase maps using ESPIRiT and virtual conjugate coils. Magn Reson Med 77:1201-1207
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Aksoy, Murat; Maclaren, Julian; Bammer, Roland (2017) Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Magn Reson Imaging 39:44-52
Bian, W; Tranvinh, E; Tourdias, T et al. (2016) In Vivo 7T MR Quantitative Susceptibility Mapping Reveals Opposite Susceptibility Contrast between Cortical and White Matter Lesions in Multiple Sclerosis. AJNR Am J Neuroradiol 37:1808-1815
Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying et al. (2016) Trade-off between angular and spatial resolutions in in vivo fiber tractography. Neuroimage 129:117-132

Showing the most recent 10 out of 446 publications