Amyloid A (AA) amyloidosis, a complication of inflammatory diseases such as tuberculosis, leprosy and rheumatoid arthritis, occurs more frequently with increasing length of unchecked disease. AA fibrils are derived from apoSAA proteins (transient, injury-specific constituents of high density lipoprotein (HDL)). At the resolution of an acute inflammatory episode, elevated apoSAA appears to be catabolized by two pathways; one is cell-associated and theother involves secreted enzymes, either extracellularly or in phagolysosomes. When normal clearance is impaired, insoluble AA fibrils accumulate extracellularly. Here we study apoSAA catabolism as it relates to AA amyloidosis, using recombinant apoSAA3 and nonamyloidogenic isoforms such as apoSAA1 as controls. These apoSAA molecules are used for in vivo and in vitro studies of apoSAA catabolism in hepatocytes and macrophages from young and old, amyloidotic andnonamyloidotic, male and female hamsters. The goal is to achieve AA fibril formation in a deemed in vitro system, thereby establishing the requisite factors for AA fibril formation. The hypothesis that apoSAA clearance occurs as part of its normal function to interrupt reverse cholesterol transport is being tested. The ability of lipids and lipoproteins, serum amyloid P (SAP) andextracellular matrix (ECM) constituents to alter the capacity of lysosomal enzymes for complete catabolism of apoSAA is being investigated. The long range goals are to enhance the normal protective role of apoSAA in restoration of homeostasis, to prevent dysfunctions such as amyloidosis that occur as a complication of the chronic inflammatory conditions that are more prevalent with aging, and to understand in general how age-associated changes in regulated proteolysis can lead to amyloid fibril formation. Electrospray ionization and ultraviolet and infrared matrix-assisted laser desorption/ionization have been used to verify the molecular weights andevaluate purity of recombinant human apoSAA, MW 11,832 Da, and of synthetic analogs of model peptides, MWs 2000-5000, whose sequences represent key portions of the SAA sequence.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR010888-04
Application #
6206446
Study Section
Project Start
1999-07-01
Project End
2000-06-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
4
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Boston University
Department
Type
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana et al. (2017) Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein. Int J Mass Spectrom 416:71-79
Sethi, Manveen K; Zaia, Joseph (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409:379-394
Hu, Han; Khatri, Kshitij; Zaia, Joseph (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36:475-498
Ji, Yuhuan; Bachschmid, Markus M; Costello, Catherine E et al. (2016) S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. J Am Soc Mass Spectrom 27:677-85
Hu, Han; Khatri, Kshitij; Klein, Joshua et al. (2016) A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33:285-96
Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S et al. (2016) Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry. Anal Chem 88:3440-3
Wang, Yun Hwa Walter; Meyer, Rosana D; Bondzie, Philip A et al. (2016) IGPR-1 Is Required for Endothelial Cell-Cell Adhesion and Barrier Function. J Mol Biol 428:5019-5033
Srinivasan, Srimathi; Chitalia, Vipul; Meyer, Rosana D et al. (2015) Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18:449-62
Yu, Xiang; Sargaeva, Nadezda P; Thompson, Christopher J et al. (2015) In-Source Decay Characterization of Isoaspartate and ?-Peptides. Int J Mass Spectrom 390:101-109
Steinhorn, Benjamin S; Loscalzo, Joseph; Michel, Thomas (2015) Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 373:277-80

Showing the most recent 10 out of 253 publications