This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Alzheimer's disease (AD) is definitively diagnosed neuropathologically by the presence of senile plaques and neurofibrillary tangles in the limbic and association cortices. The predominant component of the extracellular senile plaque is amyloid beta (A-beta), a 39- to 43-amino acid peptide that is proteolytically derived from amyloid precursor protein (APP). The neuronal function of this ubiquitously expressed protein has not yet been elucidated. Although the pathogenetic mechanism(s) of AD remain to be determined, genetic, histopathologic, and biochemical evidence from humans, cell lines, and animal models implicates A-beta as a key factor in the neurodegenerative process. Therefore, one of the most prominent approaches in therapeutic development is to decrease A-beta production by inhibiting the secretases that release this peptide from APP.
The aim of this project is to extend the characterization of APP, to elucidate its normal role(s) and to understand how inhibiting the secretases may affect its physiologic function(s). Candidate binding partners have been crosslinked to full-length, plasma membrane APP stably expressed by human embryonic kidney 293 cells (HEK293). Two APP-containing complexes have been detected (Western blot, silver stain); proteomic approaches have resulted in identification of the constituent proteins. Identification of the binding partner(s) should have been straightforward, but characterization of this complex is difficult as HEK293 APP has two isoforms (751 and 770 amino acids) and is extensively glycosylated. A manuscript describing the results is now in press in the Journal of Neuroscience Research.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR010888-10
Application #
7369202
Study Section
Special Emphasis Panel (ZRG1-BECM (03))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
10
Fiscal Year
2006
Total Cost
$2,127
Indirect Cost
Name
Boston University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana et al. (2017) Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein. Int J Mass Spectrom 416:71-79
Sethi, Manveen K; Zaia, Joseph (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409:379-394
Hu, Han; Khatri, Kshitij; Zaia, Joseph (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36:475-498
Ji, Yuhuan; Bachschmid, Markus M; Costello, Catherine E et al. (2016) S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. J Am Soc Mass Spectrom 27:677-85
Hu, Han; Khatri, Kshitij; Klein, Joshua et al. (2016) A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33:285-96
Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S et al. (2016) Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry. Anal Chem 88:3440-3
Wang, Yun Hwa Walter; Meyer, Rosana D; Bondzie, Philip A et al. (2016) IGPR-1 Is Required for Endothelial Cell-Cell Adhesion and Barrier Function. J Mol Biol 428:5019-5033
Srinivasan, Srimathi; Chitalia, Vipul; Meyer, Rosana D et al. (2015) Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18:449-62
Yu, Xiang; Sargaeva, Nadezda P; Thompson, Christopher J et al. (2015) In-Source Decay Characterization of Isoaspartate and ?-Peptides. Int J Mass Spectrom 390:101-109
Steinhorn, Benjamin S; Loscalzo, Joseph; Michel, Thomas (2015) Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 373:277-80

Showing the most recent 10 out of 253 publications