This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Peptide-N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase F (PNGase F) is widely used for efficient release of N-glycans form a broad range of protein sources. The enzyme will release high mannose, hybrid and complex N-glycans and chitobiose core ?1,6Fuc substitution has little effect on activity. Although the enzyme is not appreciably active on glycans containing core ?1,3Fuc and some other rare substitutions, most N-glycans studied can be released using this enzyme. It is available form several reputable sources. However, cost, batch to batch purity and variation of specific activity can sometimes be problematic. To gain better control over these factors we have decided to produce the enzyme in-house. The plasmid and enzyme purification scheme were the kind gift of Dr. Patrick Van Roey of the Wadsworth Center, where the enzyme was originally isolated, characterized and crystallized. We have adapted the protocol for lab usage and have purified several batches of enzyme. Enzyme batches have been standardized and tested for residual proteolytic and glycosidase activities. The plasmid bearing the PNGase F insert has been transfected into K-12 Escherichia coli and the strain is maintained in cold storage for use in production of additional enzyme batches.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR010888-10
Application #
7369316
Study Section
Special Emphasis Panel (ZRG1-BECM (03))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
10
Fiscal Year
2006
Total Cost
$4,393
Indirect Cost
Name
Boston University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana et al. (2017) Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein. Int J Mass Spectrom 416:71-79
Sethi, Manveen K; Zaia, Joseph (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409:379-394
Hu, Han; Khatri, Kshitij; Zaia, Joseph (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36:475-498
Ji, Yuhuan; Bachschmid, Markus M; Costello, Catherine E et al. (2016) S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. J Am Soc Mass Spectrom 27:677-85
Hu, Han; Khatri, Kshitij; Klein, Joshua et al. (2016) A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33:285-96
Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S et al. (2016) Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry. Anal Chem 88:3440-3
Wang, Yun Hwa Walter; Meyer, Rosana D; Bondzie, Philip A et al. (2016) IGPR-1 Is Required for Endothelial Cell-Cell Adhesion and Barrier Function. J Mol Biol 428:5019-5033
Steinhorn, Benjamin S; Loscalzo, Joseph; Michel, Thomas (2015) Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 373:277-80
Walsh, Erica M; Niu, MengMeng; Bergholz, Johann et al. (2015) Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation. Biochem Biophys Res Commun 461:293-9
Théberge, Roger; Dikler, Sergei; Heckendorf, Christian et al. (2015) MALDI-ISD Mass Spectrometry Analysis of Hemoglobin Variants: a Top-Down Approach to the Characterization of Hemoglobinopathies. J Am Soc Mass Spectrom 26:1299-310

Showing the most recent 10 out of 253 publications