This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.E-cadherin is a 120-kDa membrane glycoprotein, expressed in epithelial cells, which is the main player in establishing adherens junctions between cells. The adherens junctions have both intra and extracellular anchorage points in order to regulate cell-cell interactions.[1-2] Alterations in the assembly or disassembly of adherens junctions occur in association with major changes in the state of cell, including differentiation and proliferation [3], as well as in cancer progression. Loss of E-cadherin function is a frequent event in many types of cancer, commonly caused by diminished or aberrant E-cadherin expression. [4] Recent studies have indicated that the N-glycosylation pattern of E-cadherin has a role in the molecular organization of adherens junctions. Specifically, the presence of complex N-glycans is associated with destabilized adherens junctions. [5] Investigation into the structural characteristics of E-cadherin, specifically its N-glycosylation pattern and protein binding partners, provide insight into E-cadherin mediated adhesion and cell signaling functions.Isolation of this large membrane protein has required the development of specific methods. Our methodology has isolated pools of E-cadherin with different binding partners and different N-glycosylation states, depending on cell status. The forms of E-cadherin in malignant cells are more highly glycosylated than are those in non-malignant cells; they migrate at a higher apparent weight, as detected by Western blot and peptide mass fingerprinting of excised SDS-PAGE bands. Through continued studies to identify the protein components, we have found that E-cadherin is associated with destabilizing proteins in malignant cells to a greater extent than when it is present in non-malignant cells. E-cadherin N-glycosylation has also been investigated, specifically site occupancy and N-glycan composition. MALDI-TOF MS analysis of in-gel enzymatically released N-glycans suggests E-cadherin contains predominantly complex N-glycans. This work highlights that cell context, the recruitment of specific proteins to the adhesion complex, along with specific structural modifications to E-cadherin may define the overall stability of E-cadherin mediated adhesion.References:1. Gottardi CJ, Wong E, Gumbiner BM. J Cell Biol 2001; 153(5): 1049-602. Perez-Moreno M, Jamora C, Fuchs E. Cell 2003; 112(4): 535-483. Gumbiner BM. Nat Rev Mol Cell Biol 2005; 6:622-6344. Wheelock MJ, Johnson KR. Annu Rev Cell Dev Biol 2003; 19:207-355. Liwosz A, Lei T, and Kukuruzinska MA. J Biol Chem 2006; 281:23138-49.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR010888-12
Application #
7723006
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2008-06-01
Project End
2009-05-31
Budget Start
2008-06-01
Budget End
2009-05-31
Support Year
12
Fiscal Year
2008
Total Cost
$23,336
Indirect Cost
Name
Boston University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana et al. (2017) Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein. Int J Mass Spectrom 416:71-79
Sethi, Manveen K; Zaia, Joseph (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409:379-394
Hu, Han; Khatri, Kshitij; Zaia, Joseph (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36:475-498
Ji, Yuhuan; Bachschmid, Markus M; Costello, Catherine E et al. (2016) S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. J Am Soc Mass Spectrom 27:677-85
Hu, Han; Khatri, Kshitij; Klein, Joshua et al. (2016) A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33:285-96
Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S et al. (2016) Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry. Anal Chem 88:3440-3
Wang, Yun Hwa Walter; Meyer, Rosana D; Bondzie, Philip A et al. (2016) IGPR-1 Is Required for Endothelial Cell-Cell Adhesion and Barrier Function. J Mol Biol 428:5019-5033
Steinhorn, Benjamin S; Loscalzo, Joseph; Michel, Thomas (2015) Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 373:277-80
Walsh, Erica M; Niu, MengMeng; Bergholz, Johann et al. (2015) Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation. Biochem Biophys Res Commun 461:293-9
Théberge, Roger; Dikler, Sergei; Heckendorf, Christian et al. (2015) MALDI-ISD Mass Spectrometry Analysis of Hemoglobin Variants: a Top-Down Approach to the Characterization of Hemoglobinopathies. J Am Soc Mass Spectrom 26:1299-310

Showing the most recent 10 out of 253 publications