This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Emerging evidence has linked mutations in myofiliment proteins to the development of genetic cardiomyopathies and myocardial dysfunction. Troponin C is the protein responsible for the transmission of the calcium-binding signal and triggering the contractile cycle. Dr. Liao and her associates identified two novel missense mutations in human cardiac troponin C at amino acid residues 59 (E59D) and 75 (D75Y) from a patient with idiopathic dialated cardiomyopathy, the first identified mutation of troponin C from any human disease. These missense mutations are located within the calcium-binding domain that regulates myocardial contraction, and result in decreased myofilament calcium responsiveness. These results showed mutations in troponin C contribute to the decreased contractile function in the diseased human heart. To determine the structure-function relationship, they designed a number of troponin C mutants based on replacing specific amino acid residues located within regulatory calcium-binding domains. We used in-gel proteolytic digestion, followed by MALDI-TOF and tandem mass spectrometry to structurally verify specific mutations. Additionally, semiquantitation of synthetic mutant peptides enabled estimation of relative expression levels. This mutational model system is helping to define how mutations in cardiac troponin C alter calcium responsiveness in cardiac myofilaments and, consequently, determine myocardial contractility. The paper describing these results was featured on the cover of Biophys. J. in May 2008.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR010888-13
Application #
7955893
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
13
Fiscal Year
2009
Total Cost
$1,383
Indirect Cost
Name
Boston University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana et al. (2017) Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein. Int J Mass Spectrom 416:71-79
Sethi, Manveen K; Zaia, Joseph (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409:379-394
Hu, Han; Khatri, Kshitij; Zaia, Joseph (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36:475-498
Ji, Yuhuan; Bachschmid, Markus M; Costello, Catherine E et al. (2016) S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. J Am Soc Mass Spectrom 27:677-85
Hu, Han; Khatri, Kshitij; Klein, Joshua et al. (2016) A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33:285-96
Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S et al. (2016) Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry. Anal Chem 88:3440-3
Wang, Yun Hwa Walter; Meyer, Rosana D; Bondzie, Philip A et al. (2016) IGPR-1 Is Required for Endothelial Cell-Cell Adhesion and Barrier Function. J Mol Biol 428:5019-5033
Srinivasan, Srimathi; Chitalia, Vipul; Meyer, Rosana D et al. (2015) Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18:449-62
Yu, Xiang; Sargaeva, Nadezda P; Thompson, Christopher J et al. (2015) In-Source Decay Characterization of Isoaspartate and ?-Peptides. Int J Mass Spectrom 390:101-109
Steinhorn, Benjamin S; Loscalzo, Joseph; Michel, Thomas (2015) Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 373:277-80

Showing the most recent 10 out of 253 publications