This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. ECD studies of two modified Amyloid beta peptides (20-29 and 25-35) were performed to investigate the role of H+ radicals in the ECD of peptide ions and the free radical cascade (FRC) mechanism. 2,4,6-trimethylpyridinium (TMP) was used as the fixed charge tag, which has the potential of simultaneously trapping the originally formed radical upon electron capture and inhibiting the H+ generation. Unlabeled, singly-labeled, and doubly-labeled peptides were each analyzed by ECD. It was found that both the number and locations of the fixed charge groups influenced the backbone and side-chain cleavages of these peptides in ECD. The frequency and extent of backbone cleavages decreased and those of side-chain cleavages increased with the addition of fixed charge tags. A doubly-labeled peptide with tags spaced far apart produced fewer multiple side-chain cleavages, but slightly more backbone cleavages than the one with neighboring tags. Despite the non-protonated nature of all charged sites in doubly-labeled peptide ions, several low abundance c and z+ ions were still observed in their ECD spectra. Thus, while H+ transfer may be important for the N-C(alpha) bond cleavage, there also exist other pathways. Finally, it appeared that the presence of this particular radical trap merely inhibited but did not eliminate the FRC pathway which most likely proceeded via H+ abstraction through space and produced numerous sidechain and backbone cleavages. This study has been recently published (Li et al., 2008) in the Journal of the American Society for Mass Spectrometry, 2008, 19, 1514-1526.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR010888-13
Application #
7955975
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
13
Fiscal Year
2009
Total Cost
$858
Indirect Cost
Name
Boston University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana et al. (2017) Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein. Int J Mass Spectrom 416:71-79
Sethi, Manveen K; Zaia, Joseph (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409:379-394
Hu, Han; Khatri, Kshitij; Zaia, Joseph (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36:475-498
Ji, Yuhuan; Bachschmid, Markus M; Costello, Catherine E et al. (2016) S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. J Am Soc Mass Spectrom 27:677-85
Hu, Han; Khatri, Kshitij; Klein, Joshua et al. (2016) A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33:285-96
Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S et al. (2016) Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry. Anal Chem 88:3440-3
Wang, Yun Hwa Walter; Meyer, Rosana D; Bondzie, Philip A et al. (2016) IGPR-1 Is Required for Endothelial Cell-Cell Adhesion and Barrier Function. J Mol Biol 428:5019-5033
Srinivasan, Srimathi; Chitalia, Vipul; Meyer, Rosana D et al. (2015) Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18:449-62
Yu, Xiang; Sargaeva, Nadezda P; Thompson, Christopher J et al. (2015) In-Source Decay Characterization of Isoaspartate and ?-Peptides. Int J Mass Spectrom 390:101-109
Steinhorn, Benjamin S; Loscalzo, Joseph; Michel, Thomas (2015) Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 373:277-80

Showing the most recent 10 out of 253 publications