There is strong evidence that high tumor oxygen levels predict the response of human tumors to radiation therapy and the hypothesis that post-irradiation reoxygenation contributes to the success of fractionated radiation. Methods for establishing the role of reoxygenation in the response to radiation of individual tumors, however, have not been available. EPR oximetry using implanted paramagnetic materials (PM) is capable of the repeated, sensitive pO2 assessments necessary to study reoxygenation in animal tumors and has the potential for clinical use. EPR has a high time resolution, is capable of spatial resolution and once the PM is implanted pO2 can be assessed non-invasively. In this project we are testing whether the changes in tumor pO2 occur after small, clinically relevant doses of radiation and whether reoxygenation assessed as tumor pO2 is predictive for improved tumor local control by ionizing radiation. Although reoxygenation has been shown to occur in virtually all animal tumor models, the mechanism have not been well worked out. Using EPR oximetry to determine the tumor dependent time course of post-irradiation pO2 we will examine systematically some of the factors that could contribute to reoxygenation. These include cell cycle changes and proliferation by flow cytometry, % necrotic fraction by histology, and dynamic imaging with MRI to assess tumor perfusion. If the overall goals of this project are realized it will improve the fundamental understanding of the role that oxygen plays in post-radiation reoxygenation in tumors.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR011602-05
Application #
6353197
Study Section
Project Start
2000-09-01
Project End
2002-04-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
5
Fiscal Year
2000
Total Cost
$12,155
Indirect Cost
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Sinha, Birandra K; Leinisch, Fabian; Bhattacharjee, Suchandra et al. (2014) DNA cleavage and detection of DNA radicals formed from hydralazine and copper (II) by ESR and immuno-spin trapping. Chem Res Toxicol 27:674-82
Dunn, Jeff F; Khan, Mohammad N; Hou, Huagang G et al. (2011) Cerebral oxygenation in awake rats during acclimation and deacclimation to hypoxia: an in vivo electron paramagnetic resonance study. High Alt Med Biol 12:71-7
Shen, Jiangang; Khan, Nadeem; Lewis, Lionel D et al. (2003) Oxygen consumption rates and oxygen concentration in molt-4 cells and their mtDNA depleted (rho0) mutants. Biophys J 84:1291-8
Khan, Nadeem; Wilmot, Carmen M; Rosen, Gerald M et al. (2003) Spin traps: in vitro toxicity and stability of radical adducts. Free Radic Biol Med 34:1473-81
Pogue, Brian W; O'Hara, Julia A; Demidenko, Eugene et al. (2003) Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer Res 63:1025-33
Hou, Huagang; Grinberg, Oleg Y; Taie, Satoshi et al. (2003) Electron paramagnetic resonance assessment of brain tissue oxygen tension in anesthetized rats. Anesth Analg 96:1467-72, table of contents
Chen, Bin; Pogue, Brian W; Goodwin, Isak A et al. (2003) Blood flow dynamics after photodynamic therapy with verteporfin in the RIF-1 tumor. Radiat Res 160:452-9
Dunn, Jeff F; Swartz, Harold M (2003) In vivo electron paramagnetic resonance oximetry with particulate materials. Methods 30:159-66
Khan, Nadeem; Shen, Jiangang; Chang, Ta Yuan et al. (2003) Plasma membrane cholesterol: a possible barrier to intracellular oxygen in normal and mutant CHO cells defective in cholesterol metabolism. Biochemistry 42:23-9
Swartz, Harold M (2002) Measuring real levels of oxygen in vivo: opportunities and challenges. Biochem Soc Trans 30:248-52

Showing the most recent 10 out of 44 publications