H001 The intracellular deposition of energy from ionizing radiations initiates a cascade of molecular events which can express within that phase of the cell cycle through to later cell generations. Understanding these molecular events can lead to an understanding of the carcinogenic process and ultimately to circumvention or control. The microbeam is unique in that it can deliver a radiation insult to a known cell amongst others or subcellular compartments in many cells. Additionally precisely 1 particle [or more] can be delivered to a specific site, and it has been found that 1 alpha particle results in fewer cells progressing from G1 into S phase, thereby causing a cell cycle delay response. However more cells are delayed than show a p53 response while p21 expression can be found in non p53 responding cells. Clearly there is a fluence dependent increase in the percentage of cells responding, with however a strong indication that there is a non-random intra-nuclear sensitivity to alpha particle insult. The initiation of a stress response does not appear to be confined to nuclear perturbation, but can manifest following neighbor or cytoplasmic irradiation. This has implications for extrapolations in risk estimation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR011623-07
Application #
6653616
Study Section
Project Start
2002-09-01
Project End
2003-08-31
Budget Start
Budget End
Support Year
7
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Chai, Y; Calaf, G M; Zhou, H et al. (2013) Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice. Br J Cancer 108:91-8
Chai, Y; Lam, R K K; Calaf, G M et al. (2013) Radiation-induced non-targeted response in vivo: role of the TGFýý-TGFBR1-COX-2 signalling pathway. Br J Cancer 108:1106-12
Hu, Burong; Grabham, Peter; Nie, Jing et al. (2012) Intrachromosomal changes and genomic instability in site-specific microbeam-irradiated and bystander human-hamster hybrid cells. Radiat Res 177:25-34
Hei, Tom K; Zhao, Yongliang; Zhou, Hongning et al. (2011) Mechanism of radiation carcinogenesis: role of the TGFBI gene and the inflammatory signaling cascade. Adv Exp Med Biol 720:163-70
Hei, Tom K; Ballas, Leslie K; Brenner, David J et al. (2009) Advances in radiobiological studies using a microbeam. J Radiat Res 50 Suppl A:A7-A12
Chai, Yunfei; Hei, Tom K (2008) Radiation Induced Bystander Effect in vivo. Acta Med Nagasaki 53:S65-S69
Brenner, David J (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 18:234-9
Hei, Tom K; Zhou, Hongning; Ivanov, Vladimir N et al. (2008) Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol 60:943-50
Ponnaiya, Brian; Jenkins-Baker, Gloria; Randers-Pherson, Gerhard et al. (2007) Quantifying a bystander response following microbeam irradiation using single-cell RT-PCR analyses. Exp Hematol 35:64-8
Hei, Tom K (2006) Cyclooxygenase-2 as a signaling molecule in radiation-induced bystander effect. Mol Carcinog 45:455-60

Showing the most recent 10 out of 64 publications