This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Mike Maccoss has given the following seminars: Computational analysis of shotgun proteomics data, Combi Seminars, University of Washington, Seattle, Washington, 2005 Approaches for large scale gene annotation and protein phenotyping using mass spectrometry, Markey Medical Genetics, University of Washington, Seattle, Washington, 2005 Approaches for large scale gene annotation and protein phenotyping using mass spectrometry, ThermoElectron San Diego Users Meeting, La Jolla, California, 2005 Measurement of isotope enrichment and quantitative differential display using ultrahigh performance mass spectrometry, ThermoElectron Bay Area Users Meeting, San Francisco, California, 2005 Quantitative proteome-wide measurements with and without stable isotope labeling using ultrahigh performance mass spectrometry, ThermoElectron Proteomicsn, Portland, Oregon, 2005 Finding differences between proteomes: A modern day needle in a haystack problem, Humphery Symposium, University of Vermont, Burlington, Vermont, 2005 Quantitative mass spectrometry of peptides with and without stable isotope labeling: Current status and fundamental limitations, The Association of Biomolecular Resource Facilities, Long Beach, California, 2006 High throughput and unambiguous quantitative proteomics using H-SRM on a triple quadrupole mass spectrometer, ThermoElectron ASMS User's Meeting, Seattle, Washington, 2006

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR011823-11
Application #
7420737
Study Section
Special Emphasis Panel (ZRG1-CB-H (40))
Project Start
2006-09-20
Project End
2007-08-31
Budget Start
2006-09-20
Budget End
2007-08-31
Support Year
11
Fiscal Year
2006
Total Cost
$9,977
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Hollmann, Taylor; Kim, Tae Kwon; Tirloni, Lucas et al. (2018) Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 48:211-224
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
Seixas, Adriana; Alzugaray, María Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M et al. (2018) A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 8:4698
Luhtala, Natalie; Aslanian, Aaron; Yates 3rd, John R et al. (2017) Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. J Biol Chem 292:611-628
Thakar, Sonal; Wang, Liqing; Yu, Ting et al. (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610-E618
Jin, Meiyan; Fuller, Gregory G; Han, Ting et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20:895-908
Ogami, Koichi; Richard, Patricia; Chen, Yaqiong et al. (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31:1257-1271
Ju Lee, Hyun; Bartsch, Deniz; Xiao, Cally et al. (2017) A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 8:1456

Showing the most recent 10 out of 583 publications