This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Ytm1, Nop7, and Erb1 are essential, conserved nucleolar proteins necessary for assembly of 60S ribosomal subunits. Each of these three proteins is dependent on the other for their assembly into and stable association with preribosomes. In their absence, processing of 27SA3 pre-rRNA to 27SB pre-rRNA is blocked. Interaction between the central domain of Nop7 with the conserved amino-terminal middle of Erb1 is required for their recruitment into pre-rRNPs. The WD40 motif of Ytm1 then binds to Erb1 amino-terminal to the Nop7 binding site. Consistent with these domains of interaction, expression of truncated Ytm1 or Erb1 constructs containing only these interaction domains enables the proteins to associate with each other, assemble into preribosomes, and cause a dominant negative effect on ribosome biogenesis. What are the functions of the conserved amino-terminal half of Ytm1 or the conserved WD40 motif in the C-terminal half of Erb1, which are missing in these dominant-negative truncations? Erb1 also may function in cell growth and proliferation; overexpression of Erb1 interferes with mitotic chromosome segregation. How does Erb1 participate in this pathway?To address these questions, we are carrying out genome-wide two-hybrid screens using the amino-terminal half of Ytm1, the C-terminal half of Erb1 and full-length Erb1. Interactions of these portions of Erb1 and Ytm1 with other molecules in assembling ribosomes may be critical to establish proper dynamics of ribosome biogenesis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR011823-12
Application #
7602107
Study Section
Special Emphasis Panel (ZRG1-CB-H (40))
Project Start
2007-09-01
Project End
2008-08-31
Budget Start
2007-09-01
Budget End
2008-08-31
Support Year
12
Fiscal Year
2007
Total Cost
$6,224
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M et al. (2018) A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 8:4698
Hollmann, Taylor; Kim, Tae Kwon; Tirloni, Lucas et al. (2018) Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 48:211-224
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
Seixas, Adriana; Alzugaray, María Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Luhtala, Natalie; Aslanian, Aaron; Yates 3rd, John R et al. (2017) Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. J Biol Chem 292:611-628
Thakar, Sonal; Wang, Liqing; Yu, Ting et al. (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610-E618
Jin, Meiyan; Fuller, Gregory G; Han, Ting et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20:895-908
Ogami, Koichi; Richard, Patricia; Chen, Yaqiong et al. (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31:1257-1271
Ju Lee, Hyun; Bartsch, Deniz; Xiao, Cally et al. (2017) A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 8:1456

Showing the most recent 10 out of 583 publications