This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The genome of the intracellular parasite Cryptosporidium parvum has recently been sequenced, but protein expression data for the invasive stages of this important zoonotic gastrointestinal pathogen are limited. In this paper a comprehensive analysis of the expressed protein repertoire of an excysted oocyst/sporozoite preparation of C. parvum is presented. Three independent proteome platforms were employed which yielded more than 4800 individual protein identifications representing 1237 nonredundant proteins, corresponding to approximately 30% of the predicted proteome. Peptide data were mapped to the corresponding locations on the C. parvum genome and a publicly accessible interface for proteome data was developed for data-mining and visualisation at CryptoDB (http://cryptodb.org). These data provide a timely and valuable resource for improved annotation of the genome, verification of predicted hypothetical proteins and identification of proteins not predicted by current gene models. The data indicated the expression of proteins likely to be important to the invasion and intracellular establishment of the parasite, including surface proteins, constituents of the remnant mitochondrion and apical organelles. Comparison of the expressed proteome with existing transcriptional data indicated only a weak correlation. For approximately half the proteome there was limited functional and structural information, highlighting the limitations in the current understanding of Cryptosporidium biology.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR011823-14
Application #
7957768
Study Section
Special Emphasis Panel (ZRG1-CB-H (40))
Project Start
2009-09-01
Project End
2010-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
14
Fiscal Year
2009
Total Cost
$3,309
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M et al. (2018) A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 8:4698
Hollmann, Taylor; Kim, Tae Kwon; Tirloni, Lucas et al. (2018) Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 48:211-224
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
Seixas, Adriana; Alzugaray, María Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Luhtala, Natalie; Aslanian, Aaron; Yates 3rd, John R et al. (2017) Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. J Biol Chem 292:611-628
Thakar, Sonal; Wang, Liqing; Yu, Ting et al. (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610-E618
Jin, Meiyan; Fuller, Gregory G; Han, Ting et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20:895-908
Ogami, Koichi; Richard, Patricia; Chen, Yaqiong et al. (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31:1257-1271
Ju Lee, Hyun; Bartsch, Deniz; Xiao, Cally et al. (2017) A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 8:1456

Showing the most recent 10 out of 583 publications