This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Transmembrane proteins are of particular interest to biologists because they are involved in a broad range of processes and functions and are often the targets of therapeutic drugs. Experimentally determining the 3D structure of a transmembrane protein is a difficult task, and few of the currently known tertiary structures are of transmembrane proteins, despite the fact that as many as one quarter of the proteins in a given organism are transmembrane proteins. Computational methods for predicting the basic topology of a transmembrane protein are therefore of great interest, and these methods must be able to distinguish between mature, membrane-spanning proteins and proteins which, when first synthesized, contain an N-terminal membrane-spanning signal peptide which is cleaved from the mature protein by the enzyme signal peptidase. In this work, we present Philius, a new computational approach that outperforms previous methods in detecting signal peptides and correctly predicting the topology of transmembrane proteins. Philius also supplies a set of confidence scores with each prediction. In addition, we have made predictions for over six million proteins in the Yeast Resource Center database and we have made these predictions publicly available.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR011823-15
Application #
8171276
Study Section
Special Emphasis Panel (ZRG1-CB-H (40))
Project Start
2010-09-01
Project End
2011-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
15
Fiscal Year
2010
Total Cost
$37,117
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Hollmann, Taylor; Kim, Tae Kwon; Tirloni, Lucas et al. (2018) Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 48:211-224
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
Seixas, Adriana; Alzugaray, María Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M et al. (2018) A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 8:4698
Luhtala, Natalie; Aslanian, Aaron; Yates 3rd, John R et al. (2017) Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. J Biol Chem 292:611-628
Thakar, Sonal; Wang, Liqing; Yu, Ting et al. (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610-E618
Jin, Meiyan; Fuller, Gregory G; Han, Ting et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20:895-908
Ogami, Koichi; Richard, Patricia; Chen, Yaqiong et al. (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31:1257-1271
Ju Lee, Hyun; Bartsch, Deniz; Xiao, Cally et al. (2017) A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 8:1456

Showing the most recent 10 out of 583 publications