This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. During every cell cycle, chromosomes must be accurately partitioned to daughter cells to prevent genomic instability and aneuploidy, a hallmark of all tumors and many birth defects. Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA sequences and mediate attachment to the spindle. One hallmark of all eukaryotic kinetochores is an essential centromeric histone H3 (CenH3) variant that localizes exclusively to centromeres and replaces canonical histone H3 in centromeric nucleosomes. Because centromeric DNA sequences are not conserved, CenH3 has been proposed to be the epigenetic component that specifies the site of kinetochore assembly. Although CenH3 is an essential component of all kinetochores and is required for centromeric chromatin structure, little is known about CenH3 incorporation into centromeric DNA. We therefore propose to purify the budding yeast CenH3, Cse4, to identify interacting proteins that may regulate its exclusive deposition at the centromere.
Showing the most recent 10 out of 583 publications