This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. X-linked inhibitor of apoptosis (XIAP) is a potent antagonist of caspase apoptotic activity. XIAP also functions as an E3 ubiquitin ligase, targeting caspases for degradation. However, molecular pathways controlling XIAP activities remain unclear. Here, we report that nitric oxide (NO) reacts with XIAP by S-nitrosylating its RING domain (forming SNO-XIAP), thereby inhibiting E3 ligase and antiapoptotic activity. NO-mediated neurotoxicity and caspase activation have been linked to several neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. We find significant SNO-XIAP formation in brains of patients with these diseases, implicating this reaction in the etiology of neuronal damage. Conversely, S-nitrosylation of caspases is known to inhibit apoptotic activity. Unexpectedly, we find that SNO-caspase transnitrosylates (transfers its NO group) to XIAP, forming SNO-XIAP, and thus promotes cell injury and death. These findings provide insights into the regulation of caspase activation in neurodegenerative disorders mediated, at least in part, by nitrosative stress.
Showing the most recent 10 out of 583 publications