This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Lipopolysaccharide (LPS) is a major component of the Gram-negative bacterial cell wall. LPS is comprised of three components: lipid A, core polysaccharide (Kdo and one or more heptose residues), and polysaccharide side chains. LPS biosynthesis that is halted prior to heptose addition results in a deep-rough phenotype and membrane permeability to antibiotics is increased. For this reason, the heptose biosynthetic pathway has been marked as a potential drug target. Our goal is to determine the mechanism of GmhA, an isomerase that catalyzes the first committed step of ADP-L-glycero- x-manno-heptose biosynthesis as well as GmhB and HldE which are also key players in LPS biosynthesis. Determination of the enzymatic mechanisms used by these proteins will aid in the rational design of inhibitors of GmhA, GmhB and HldE as a means to combat Gram negative infection.
Showing the most recent 10 out of 167 publications