This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Thioredoxin Reductase (TR) is the essential enzyme of the thioredoxin system, which functions primarily to prevent or repair cellular oxidation as well as maintaining the machinery responsible for DNA synthesis and control of certain cell signaling pathways. TR is one of only 25 proteins in humans that require the trace element selenium incorporated as the amino acid selenocysteine (Sec) in a conserved C-terminal active site tetrapeptide motif. This requirement is shared by all mammalian TRs but not TRs from lower animals such as Drosophila melanogaster (DmTR) which utilizes cysteine (Cys). The purpose of this project is to investigate the structural components of the Sec-containing and Cys-containing active sites of TR by crystallography as current structures lack the critical C-terminal structural information required for understanding the mechanism of these proteins. To date no mammalian TR structure has visualized the C-terminal active site. We have evidence that both composition and configuration of the C-terminal tail which contains the C-terminal active site are important in its exchange with the flavin associated dithiol (N-terminal active site). To investigate this we have developed methods for soaking DmTR crystals lacking 8 AA at their C-termini (DmTR?""""""""8) with octapeptides of various compositions to determine their structure. Using data obtained at Rapidata 2008 have been able to determine peptides with about 40% occupancy. We have modified our soaking conditions and compositions to improve our occupancy. Several of our octapeptides include Sec (selenocysteine) thus anomalous scattering will be helpful in assigning those residues.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR012408-13
Application #
7957230
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (40))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
13
Fiscal Year
2009
Total Cost
$9,163
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Sui, Xuewu; Farquhar, Erik R; Hill, Hannah E et al. (2018) Preparation and characterization of metal-substituted carotenoid cleavage oxygenases. J Biol Inorg Chem 23:887-901
Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen (2018) Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases. J Biol Chem 293:7737-7753
Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira et al. (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods 14:443-449
Wangkanont, Kittikhun; Winton, Valerie J; Forest, Katrina T et al. (2017) Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 56:3983-3992
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Song, Lingshuang; Yang, Lin; Meng, Jie et al. (2017) Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental-Computational Study. J Phys Chem Lett 8:347-351
Orlova, Natalia; Gerding, Matthew; Ivashkiv, Olha et al. (2017) The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 45:3724-3737
Firestone, Ross S; Cameron, Scott A; Karp, Jerome M et al. (2017) Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase. ACS Chem Biol 12:464-473
Guo, Bingqian; McMillan, Brian J; Blacklow, Stephen C (2016) Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Curr Opin Struct Biol 41:38-45
Simmons, Chad R; Zhang, Fei; Birktoft, Jens J et al. (2016) Construction and Structure Determination of a Three-Dimensional DNA Crystal. J Am Chem Soc 138:10047-54

Showing the most recent 10 out of 167 publications