This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Structure-based drug design of potent botulinum neurotoxin inhibitors. The neurotoxin produced by the soil-dwelling bacterium Clostridium botulinum is among the most potent toxins known. The toxin is a zinc-dependent endoprotease that disrupts vesicle trafficking at the neuromuscular synapses, effectively blocking neurotransmitter release and leading to the characteristic flaccid paralysis of botulism. In collaboration with groups at Tufts University School of Veterinary Medicine, Absolute Science (Lexington, MA), the Laboratory for Drug Discovery in Neurodegeneration at Harvard University, and the Scripps Research Institute, lead compounds with significant inhibitory activity against the neurotoxin have been identified by library screening. The X-ray crystal structures of the C. botulinum neurotoxin (BoNT) serotype A protease in complex with a number of lead compounds have been determined and led to the development of a potent BoNT/A inhibitor.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR012408-13
Application #
7957232
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (40))
Project Start
2009-07-01
Project End
2010-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
13
Fiscal Year
2009
Total Cost
$7,880
Indirect Cost
Name
Brookhaven National Laboratory
Department
Type
DUNS #
027579460
City
Upton
State
NY
Country
United States
Zip Code
11973
Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen (2018) Active site remodeling during the catalytic cycle in metal-dependent fructose-1,6-bisphosphate aldolases. J Biol Chem 293:7737-7753
Sui, Xuewu; Farquhar, Erik R; Hill, Hannah E et al. (2018) Preparation and characterization of metal-substituted carotenoid cleavage oxygenases. J Biol Inorg Chem 23:887-901
Fuller, Franklin D; Gul, Sheraz; Chatterjee, Ruchira et al. (2017) Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nat Methods 14:443-449
Wangkanont, Kittikhun; Winton, Valerie J; Forest, Katrina T et al. (2017) Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 56:3983-3992
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Song, Lingshuang; Yang, Lin; Meng, Jie et al. (2017) Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental-Computational Study. J Phys Chem Lett 8:347-351
Orlova, Natalia; Gerding, Matthew; Ivashkiv, Olha et al. (2017) The replication initiator of the cholera pathogen's second chromosome shows structural similarity to plasmid initiators. Nucleic Acids Res 45:3724-3737
Firestone, Ross S; Cameron, Scott A; Karp, Jerome M et al. (2017) Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase. ACS Chem Biol 12:464-473
Tajima, Nami; Karakas, Erkan; Grant, Timothy et al. (2016) Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534:63-8
Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander et al. (2016) Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase. J Lab Autom 21:107-14

Showing the most recent 10 out of 167 publications