This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Transgenic mouse models of human cancer have the potential to be more reflective of human cancers than xenograft models because transgenic mice form tumor in situ, i.e. in an environment more similar to the human tumor and in the setting of a normal immune system. Small animal X-ray computed tomography (microCT) is an economical and highly quantitative three-dimensional method for visualizing blood vessels and angiogenesis preclinically, even in comparison to small animal magnetic resonance imaging. In this collaboration, we are developing practical guidelines for rapid, accurate visualization of intermediate to large caliber (greater than 93 micron) blood vessels for serial assessment of vascularity during preclinical therapeutic trials in living mice. Because of the long scan times for most small animal computed tomography instruments, we are using a long-acting blood pool contrast agent. In addition to guidelines, we are also further developing tools to assess vessels through qualitative visual renderings. The same optimized acquisition settings will be necessary for segmentation analysis and will allow quantitative analysis of tumor blood volume, vessel density, vessel caliber, degree of branching, and tortuosity.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR012553-08
Application #
7358977
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Project Start
2006-08-01
Project End
2007-07-31
Budget Start
2006-08-01
Budget End
2007-07-31
Support Year
8
Fiscal Year
2006
Total Cost
$57,035
Indirect Cost
Name
University of Utah
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Burton, B M; Aras, K K; Good, W W et al. (2018) Image-based modeling of acute myocardial ischemia using experimentally derived ischemic zone source representations. J Electrocardiol 51:725-733
Tong, Xin; Edwards, John; Chen, Chun-Ming et al. (2016) View-Dependent Streamline Deformation and Exploration. IEEE Trans Vis Comput Graph 22:1788-801
Burton, Brett M; Tate, Jess D; Good, Wilson et al. (2016) The Role of Reduced Left Ventricular, Systolic Blood Volumes in ST Segment Potentials Overlying Diseased Tissue of the Ischemic Heart. Comput Cardiol (2010) 43:209-212
Erem, Burak; Martinez Orellana, Ramon; Hyde, Damon E et al. (2016) Extensions to a manifold learning framework for time-series analysis on dynamic manifolds in bioelectric signals. Phys Rev E 93:042218
Raj, Mukund; Mirzargar, Mahsa; Preston, J Samuel et al. (2016) Evaluating Shape Alignment via Ensemble Visualization. IEEE Comput Graph Appl 36:60-71
Gao, Yi; Zhu, Liangjia; Cates, Joshua et al. (2015) A Kalman Filtering Perspective for Multiatlas Segmentation. SIAM J Imaging Sci 8:1007-1029
Gillette, Karli; Tate, Jess; Kindall, Brianna et al. (2015) Generation of Combined-Modality Tetrahedral Meshes. Comput Cardiol (2010) 2015:953-956
Erem, B; Hyde, D E; Peters, J M et al. (2015) COMBINED DELAY AND GRAPH EMBEDDING OF EPILEPTIC DISCHARGES IN EEG REVEALS COMPLEX AND RECURRENT NONLINEAR DYNAMICS. Proc IEEE Int Symp Biomed Imaging 2015:347-350
Coll-Font, J; Erem, B; Štóví?ek, P et al. (2015) A STATISTICAL APPROACH TO INCORPORATE MULTIPLE ECG OR EEG RECORDINGS WITH ARTIFACTUAL VARIABILITY INTO INVERSE SOLUTIONS. Proc IEEE Int Symp Biomed Imaging 2015:1053-1056
Elhabian, Shireen; Gur, Yaniv; Vachet, Clement et al. (2014) Subject-Motion Correction in HARDI Acquisitions: Choices and Consequences. Front Neurol 5:240

Showing the most recent 10 out of 149 publications