This proposal concerns Ca dynamics during mouse egg fertilization. The project focuses on spatial and temporal changes in [Ca2+]i in mouse (not starfish) oocytes during fertilization. This project brings together two strong PIs with expertise in both the modeling of calcium signals and in oocyte cell biology. Its direct relevance to the calcium dynamics core project implies a strong synergism between this collaborative project and the calcium core project. The project aims to employ a finite element modeling method within the Virtual Cell framework to compute calcium dynamics in mouse oocytes based on the measured distribution of the ER and of the cell overall. Five major hypotheses are proposed, all of which are based on experimental protocols that are within the expertise of the PIs. Although it is implied rather than explicitly stated, the outcomes of these experiments will drive the modeling half of the proposal. Particular strengths of this project include the proven techniques of ER imaging and localized Ca changgs,aind the novel aspects of both of these components in this project.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
1P41RR013186-01A1
Application #
6123542
Study Section
Project Start
1998-09-30
Project End
1999-07-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
1
Fiscal Year
1998
Total Cost
Indirect Cost
Name
University of Connecticut
Department
Type
DUNS #
City
Farmington
State
CT
Country
United States
Zip Code
06030
Ron, Amit; Azeloglu, Evren U; Calizo, Rhodora C et al. (2017) Cell shape information is transduced through tension-independent mechanisms. Nat Commun 8:2145
Schaff, James C; Gao, Fei; Li, Ye et al. (2016) Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology. PLoS Comput Biol 12:e1005236
Semenova, Irina; Ikeda, Kazuho; Resaul, Karim et al. (2014) Regulation of microtubule-based transport by MAP4. Mol Biol Cell 25:3119-32
Novak, Igor L; Slepchenko, Boris M (2014) A conservative algorithm for parabolic problems in domains with moving boundaries. J Comput Phys 270:203-213
Michalski, Paul J (2014) First demonstration of bistability in CaMKII, a memory-related kinase. Biophys J 106:1233-5
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John et al. (2014) Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 7:ra12
Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil (2013) Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling. J Gen Physiol 141:521-35
Michalski, P J (2013) The delicate bistability of CaMKII. Biophys J 105:794-806
Falkenburger, Björn H; Dickson, Eamonn J; Hille, Bertil (2013) Quantitative properties and receptor reserve of the DAG and PKC branch of G(q)-coupled receptor signaling. J Gen Physiol 141:537-55
Ditlev, Jonathon A; Mayer, Bruce J; Loew, Leslie M (2013) There is more than one way to model an elephant. Experiment-driven modeling of the actin cytoskeleton. Biophys J 104:520-32

Showing the most recent 10 out of 117 publications