This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Fluorescence correlation spectroscopy (FCS) based on statistical analysis of photons emitted by fluorescent particles as they move through a femtoliter observation volume provides quantitative information about mobility of molecules, concentration, composition of molecular complexes, dissociation constants, and reaction kinetics. The established theory of FCS predicts the statistics of photon arrival times based on free diffusion of particles, and particles involved in certain kinds of reactions. We are developing a new method for parameter optimization using virtual FCS in conjunction with Virtual Cell. Based on the molecular mass of each species the diffusion coefficient in the cytoplasm can be predicted. These values can then be used perform a virtual FCS simulation. By integrating the results from multiple species it is possible to calculate a virtual autocorrelation function for the model. Comparison of the virtual autocorrelation function to the experimental FCS autocorrelation function in live cells can be used to optimize parameters in the model. This represents a powerful global approach to parameter optimization in the Virtual Cell.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR013186-11
Application #
7722720
Study Section
Special Emphasis Panel (ZRG1-CB-L (40))
Project Start
2008-08-01
Project End
2009-04-30
Budget Start
2008-08-01
Budget End
2009-04-30
Support Year
11
Fiscal Year
2008
Total Cost
$41,459
Indirect Cost
Name
University of Connecticut
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
022254226
City
Farmington
State
CT
Country
United States
Zip Code
06030
Ron, Amit; Azeloglu, Evren U; Calizo, Rhodora C et al. (2017) Cell shape information is transduced through tension-independent mechanisms. Nat Commun 8:2145
Schaff, James C; Gao, Fei; Li, Ye et al. (2016) Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology. PLoS Comput Biol 12:e1005236
Semenova, Irina; Ikeda, Kazuho; Resaul, Karim et al. (2014) Regulation of microtubule-based transport by MAP4. Mol Biol Cell 25:3119-32
Novak, Igor L; Slepchenko, Boris M (2014) A conservative algorithm for parabolic problems in domains with moving boundaries. J Comput Phys 270:203-213
Michalski, Paul J (2014) First demonstration of bistability in CaMKII, a memory-related kinase. Biophys J 106:1233-5
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John et al. (2014) Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 7:ra12
Ditlev, Jonathon A; Mayer, Bruce J; Loew, Leslie M (2013) There is more than one way to model an elephant. Experiment-driven modeling of the actin cytoskeleton. Biophys J 104:520-32
Acker, Corey D; Loew, Leslie M (2013) Characterization of voltage-sensitive dyes in living cells using two-photon excitation. Methods Mol Biol 995:147-60
Loew, Leslie M; Hell, Stefan W (2013) Superresolving dendritic spines. Biophys J 104:741-3
Blasius, T Lynne; Reed, Nathan; Slepchenko, Boris M et al. (2013) Recycling of kinesin-1 motors by diffusion after transport. PLoS One 8:e76081

Showing the most recent 10 out of 117 publications