This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We would like to model a dendritic spine as an excitatory synapse, and its associated parent dendrite. Virtual Cell's ability to model ion flux in a voltage sensitive manner gives a powerful and unique framework to do so. The specific goal would be to model a physiologically accurate CA1 pyramidal neuron spine compartment with the following: glutamate receptors (AMPARs, NMDARs (with voltage dependence)), the appropriate voltage sensitive calcium channels (CaV3, CaV1.2/1.3 and CaV2.2/2.3), and SK channels (with intracellular Ca dependence). It is also necessary to accurately model local Ca buffering and diffusion. We would also like to include a dendrite compartment that is electrically and diffusionally coupled to the spine.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR013186-12
Application #
7956402
Study Section
Special Emphasis Panel (ZRG1-CB-L (40))
Project Start
2009-05-01
Project End
2010-04-30
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
12
Fiscal Year
2009
Total Cost
$32,549
Indirect Cost
Name
University of Connecticut
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
022254226
City
Farmington
State
CT
Country
United States
Zip Code
06030
Ron, Amit; Azeloglu, Evren U; Calizo, Rhodora C et al. (2017) Cell shape information is transduced through tension-independent mechanisms. Nat Commun 8:2145
Schaff, James C; Gao, Fei; Li, Ye et al. (2016) Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology. PLoS Comput Biol 12:e1005236
Semenova, Irina; Ikeda, Kazuho; Resaul, Karim et al. (2014) Regulation of microtubule-based transport by MAP4. Mol Biol Cell 25:3119-32
Novak, Igor L; Slepchenko, Boris M (2014) A conservative algorithm for parabolic problems in domains with moving boundaries. J Comput Phys 270:203-213
Michalski, Paul J (2014) First demonstration of bistability in CaMKII, a memory-related kinase. Biophys J 106:1233-5
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John et al. (2014) Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 7:ra12
Loew, Leslie M; Hell, Stefan W (2013) Superresolving dendritic spines. Biophys J 104:741-3
Blasius, T Lynne; Reed, Nathan; Slepchenko, Boris M et al. (2013) Recycling of kinesin-1 motors by diffusion after transport. PLoS One 8:e76081
Falkenberg, Cibele Vieira; Loew, Leslie M (2013) Computational analysis of Rho GTPase cycling. PLoS Comput Biol 9:e1002831
Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil (2013) Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling. J Gen Physiol 141:521-35

Showing the most recent 10 out of 117 publications