This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We would like to model a dendritic spine as an excitatory synapse, and its associated parent dendrite. Virtual Cell's ability to model ion flux in a voltage sensitive manner gives a powerful and unique framework to do so. The specific goal would be to model a physiologically accurate CA1 pyramidal neuron spine compartment with the following: glutamate receptors (AMPARs, NMDARs (with voltage dependence)), the appropriate voltage sensitive calcium channels (CaV3, CaV1.2/1.3 and CaV2.2/2.3), and SK channels (with intracellular Ca dependence). It is also necessary to accurately model local Ca buffering and diffusion. We would also like to include a dendrite compartment that is electrically and diffusionally coupled to the spine.
Showing the most recent 10 out of 117 publications