This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Cell migration is a superb example of biological complexity, as it intertwines biochemical signaling networks with biophysical locomotory processes. While the myriad of molecular components and interactions continue to become identified, the challenge looms to integrate them all into the operation of cell migration as a dynamical system. We are using the Virtual Cell (VC) environment to enable simulations of the locomotory process. The VC is already able to simulate reaction-diffusion equations on the 3-D domains (cellular interior) of complex geometries. Thus, numerical simulation and visualization of a sub-model are being developed that incorporate spatio-temporal dynamics of essential regulatory molecules in the cytoplasm. This includes reaction-diffusion equations describing chemical kinetics, diffusion and transport of actin monomers, actin binding proteins and ions. As the next step, we are enabling VC to solve the reaction-advection-diffusion equations of cytoskeletal mechanics and adhesive system on the 3-D domains and their boundaries, respectively. In addition to incorporating the appropriate numerics infrastructure to deal with the new mathematical formalisms, a key challenge will be to develop graphical representations of the biophysics that can be deployed by the user to fully specify models within a mechanics-enabled problem domain. Such representations would be structured in terms of easily manipulatable sets of components consisting of the structures, molecules, and relevant interactions. Finally, we will expand the VC software in order to dynamically change the cellular geometry to account for the protrusion/retraction movements of the cellular surface. We will adapt finite element techniques to problems of cytoskeletal dynamics with changing geometries.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-L (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Connecticut
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Ron, Amit; Azeloglu, Evren U; Calizo, Rhodora C et al. (2017) Cell shape information is transduced through tension-independent mechanisms. Nat Commun 8:2145
Schaff, James C; Gao, Fei; Li, Ye et al. (2016) Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology. PLoS Comput Biol 12:e1005236
Semenova, Irina; Ikeda, Kazuho; Resaul, Karim et al. (2014) Regulation of microtubule-based transport by MAP4. Mol Biol Cell 25:3119-32
Novak, Igor L; Slepchenko, Boris M (2014) A conservative algorithm for parabolic problems in domains with moving boundaries. J Comput Phys 270:203-213
Michalski, Paul J (2014) First demonstration of bistability in CaMKII, a memory-related kinase. Biophys J 106:1233-5
Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John et al. (2014) Interconnected network motifs control podocyte morphology and kidney function. Sci Signal 7:ra12
Loew, Leslie M; Hell, Stefan W (2013) Superresolving dendritic spines. Biophys J 104:741-3
Blasius, T Lynne; Reed, Nathan; Slepchenko, Boris M et al. (2013) Recycling of kinesin-1 motors by diffusion after transport. PLoS One 8:e76081
Falkenberg, Cibele Vieira; Loew, Leslie M (2013) Computational analysis of Rho GTPase cycling. PLoS Comput Biol 9:e1002831
Dickson, Eamonn J; Falkenburger, Björn H; Hille, Bertil (2013) Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling. J Gen Physiol 141:521-35

Showing the most recent 10 out of 117 publications