This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The use of isotopic labeling with carbon 14 is widespread in biological and medical research, medical diagnostics and drug discovery and development. However, methods to detect radioisotopes depend on the detection of a nuclear decay event, an inefficient process as there is only 1 decay event per minute for every 4.35 billion atoms of 14C present in a sample,requiring the use of high levels of radioactivity.
The aim of this project is to demonstrate a device, suitable for routine laboratory use, for atom counting of the tracer 14C, treating 14C as a """"""""stable"""""""" isotope, decreasing the dosage required for most experiments and making new classes of studies possible. LARA will be extended from analysis of 13CO2 to similar analysis of 14CO2. Instrumentation will have sensitivity orders of magnitude greater than possible with scintillation (decay) detection and will compete with typical tandem accelerator mass spectrometers (AMS) that have demonstrated sensitivity at the picomole to the attomole level. The enhanced sensitivity is important for low dose and small sample tracer studies, long-term metabolic studies, pharmacokinetics studies and is being studied as a possible tool for protein sequencing and micro-imaging studies. A 14CO2 LARA device is projected to be considerably smaller, less complex and much lower in cost than an AMS with comparable capability. It will be shown that a sealed infrared laser operating at a unique infrared transition in 14CO2, can be routinely used to probe a sample cell containing carbon dioxide. The sample will be in a low pressure electrical discharge optimized for low noise detection of the optogalvanic effect. Such a system can be used to quantitatively measure small samples of 14C-enriched carbon dioxide. Results of the measurements with enriched samples will quantify improvements required to achieve ultimate sensitivity. Techniques will be developed to achieve enhanced sensitivity at the picomole to attomole level. Techniques will include electronic and digital algorithms to lower noise, gas mixture variations to enhance signal and quantum electronic (laser) enhancements. It is further aimed to build prototype instruments for routine laboratory use and transfer the technology to biomedical research facilities. Major progress in the last year led to exceeding design goals and achieving sensitivity of order 10-15 14C/12C ratio with sample size of order 5 to 10 micrograms total carbon . Calibration samples obtained from the Research Resource for Biomedical AMS have been used in these studies.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR013461-13
Application #
8362755
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
13
Fiscal Year
2011
Total Cost
$234,050
Indirect Cost
Name
Lawrence Livermore National Laboratory
Department
Biology
Type
Organized Research Units
DUNS #
827171463
City
Livermore
State
CA
Country
United States
Zip Code
94550
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Zimmermann, Maike; Wang, Si-Si; Zhang, Hongyong et al. (2017) Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice. Mol Cancer Ther 16:376-387
Stornetta, Alessia; Zimmermann, Maike; Cimino, George D et al. (2017) DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine. Chem Res Toxicol 30:388-409
Wang, Si-Si; Zimmermann, Maike; Zhang, Hongyong et al. (2017) A diagnostic microdosing approach to investigate platinum sensitivity in non-small cell lung cancer. Int J Cancer 141:604-613
Wang, Zhican; Fang, Ying; Teague, Juli et al. (2017) In Vitro Metabolism of Oprozomib, an Oral Proteasome Inhibitor: Role of Epoxide Hydrolases and Cytochrome P450s. Drug Metab Dispos 45:712-720
Wan, Debin; Yang, Jun; Barnych, Bogdan et al. (2017) A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. J Lipid Res 58:798-808
Kim, Jeffrey; Stewart, Benjamin; Weiss, Robert H (2016) Extraction and Quantification of Tryptophan and Kynurenine from Cultured Cells and Media Using a High Performance Liquid Chromatography (HPLC) System Equipped with an Ultra-Sensitive Diode Array Detector. Bio Protoc 6:
Pan, Amy; Zhang, Hongyong; Li, Yuanpei et al. (2016) Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology 27:425103
Wang, Sisi; Zhang, Hongyong; Scharadin, Tiffany M et al. (2016) Molecular Dissection of Induced Platinum Resistance through Functional and Gene Expression Analysis in a Cell Culture Model of Bladder Cancer. PLoS One 11:e0146256
McCartt, A D; Ognibene, T; Bench, G et al. (2015) Measurements of Carbon-14 With Cavity Ring-Down Spectroscopy. Nucl Instrum Methods Phys Res B 361:277-280

Showing the most recent 10 out of 125 publications