This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. There has been considerable interest in quantifying the complexity of physiologic time series, such as heart rate. However, traditional algorithms indicate higher complexity for certain pathologic processes associated with random outputs than for healthy dynamics exhibiting long-range correlations. This paradox may be due to the fact that conventional algorithms fail to account for the multiple time scales inherent in healthy physiologic dynamics. We introduce a method to calculate multiscale entropy (MSE) for complex time series. We find that MSE robustly separates healthy and pathologic groups and consistently yields higher values for simulated long-range correlated noise than for uncorrelated noise.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR013622-07
Application #
7366529
Study Section
Special Emphasis Panel (ZRG1-SBIB-H (40))
Project Start
2006-03-01
Project End
2007-02-28
Budget Start
2006-03-01
Budget End
2007-02-28
Support Year
7
Fiscal Year
2006
Total Cost
$8,085
Indirect Cost
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Clifford, Gari D; Silva, Ikaro; Moody, Benjamin et al. (2016) False alarm reduction in critical care. Physiol Meas 37:E5-E23
Burykin, Anton; Mariani, Sara; Henriques, Teresa et al. (2015) Remembrance of time series past: simple chromatic method for visualizing trends in biomedical signals. Physiol Meas 36:N95-102
Thomas, Robert Joseph; Mietus, Joseph E; Peng, Chung-Kang et al. (2014) Relationship between delta power and the electrocardiogram-derived cardiopulmonary spectrogram: possible implications for assessing the effectiveness of sleep. Sleep Med 15:125-31
Giladi, Nir; Horak, Fay B; Hausdorff, Jeffrey M (2013) Classification of gait disturbances: distinguishing between continuous and episodic changes. Mov Disord 28:1469-73
Maidan, Inbal; Plotnik, Meir; Mirelman, Anat et al. (2010) Heart rate changes during freezing of gait in patients with Parkinson's disease. Mov Disord 25:2346-54
Plotnik, M; Giladi, N; Hausdorff, J M (2009) Bilateral coordination of gait and Parkinson's disease: the effects of dual tasking. J Neurol Neurosurg Psychiatry 80:347-50
Hausdorff, Jeffrey M (2009) Gait dynamics in Parkinson's disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos 19:026113
Ivanov, Plamen Ch; Ma, Qianli D Y; Bartsch, Ronny P et al. (2009) Levels of complexity in scale-invariant neural signals. Phys Rev E Stat Nonlin Soft Matter Phys 79:041920
Herman, Talia; Inbar-Borovsky, Noit; Brozgol, Marina et al. (2009) The Dynamic Gait Index in healthy older adults: the role of stair climbing, fear of falling and gender. Gait Posture 29:237-41
Celi, Leo Anthony; Hinske, L Christian; Alterovitz, Gil et al. (2008) An artificial intelligence tool to predict fluid requirement in the intensive care unit: a proof-of-concept study. Crit Care 12:R151

Showing the most recent 10 out of 109 publications