The explosion of fMRI-based neuroscience experiments point to the great need in the neuroscience community for reliable, freely repeatable, reproducible and non-invasive methods to study the human brain. Despite the technical challenge of performing fMRI experiments on """"""""clinical"""""""" fMRI systems, the general availability of these systems and low risk associated with performing the studies has drawn a new generation of brain researchers to MR techniques. However, the difficulty and limitations of the existing state-of-the-art is readily (and usually quickly appreciated by most users who venture into the field. The core technical development of the proposed research is a set of interrelated projects that seek to create new multimodal methods for exploring brain function with MR imaging. These seek, both individually and collectively, to significantly extend many of the limitations of current brain mapping techniques: difficulty in comparing between regions of the brain and between brains of subjects, inflexibility of stimulus design and ambiguity of temporal data analysis, limited temporal resolution of functional information, and limited accessibility and portability of many current brain mapping technologies. We propose four technical projects to meet these challenges. In the first, we seek to improve the methods to unwarp the complex convolutions of the brain to create a more systematic 2D view of the cortex. In the second, we seek to develop new technologies for encoding and analyzing functional MRI data more flexibly and robustly. In the third, we seek to combine functional MR data with electrical recordings (EEG and MEG) in order to create anew high temporal and spatial resolution image of brain function. In the fourth project we focus on the development and validation of near infra-red diffuse optical tomography for the assessment of brain function. The resource will work interactively with collaborative investigators who will help the resource expand its technology and provide services to scientists in many disciplines. While the techniques focus primarily on brain imaging, they are considerably more broadly applicable to other parts of the body. The Regional Resource will provide training for students, fellows and staff scientists, and will advance the field of functional imaging through active dissemination of new technologies and results.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR014075-03S1
Application #
6454962
Study Section
Special Emphasis Panel (ZRR1-CR-4 (03))
Program Officer
Taylor, Fred
Project Start
1999-04-01
Project End
2004-08-31
Budget Start
2001-09-01
Budget End
2002-08-31
Support Year
3
Fiscal Year
2001
Total Cost
$351,533
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Cushing, Cody A; Im, Hee Yeon; Adams Jr., Reginald B et al. (2018) Neurodynamics and connectivity during facial fear perception: The role of threat exposure and signal congruity. Sci Rep 8:2776
Izen, Sarah C; Chrastil, Elizabeth R; Stern, Chantal E (2018) Resting State Connectivity Between Medial Temporal Lobe Regions and Intrinsic Cortical Networks Predicts Performance in a Path Integration Task. Front Hum Neurosci 12:415
Kang, Dong-Wha; Kim, Dongho; Chang, Li-Hung et al. (2018) Structural and Functional Connectivity Changes Beyond Visual Cortex in a Later Phase of Visual Perceptual Learning. Sci Rep 8:5186
Farrar, Christian T; Gale, Eric M; Kennan, Richard et al. (2018) CM-101: Type I Collagen-targeted MR Imaging Probe for Detection of Liver Fibrosis. Radiology 287:581-589
Gale, Eric M; Wey, Hsiao-Ying; Ramsay, Ian et al. (2018) A Manganese-based Alternative to Gadolinium: Contrast-enhanced MR Angiography, Excretion, Pharmacokinetics, and Metabolism. Radiology 286:865-872
Jas, Mainak; Larson, Eric; Engemann, Denis A et al. (2018) A Reproducible MEG/EEG Group Study With the MNE Software: Recommendations, Quality Assessments, and Good Practices. Front Neurosci 12:530
Dahlgren, M K; Laifer, L M; VanElzakker, M B et al. (2018) Diminished medial prefrontal cortex activation during the recollection of stressful events is an acquired characteristic of PTSD. Psychol Med 48:1128-1138
van Erp, Theo G M; Walton, Esther; Hibar, Derrek P et al. (2018) Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry 84:644-654
Hari, Riitta; Baillet, Sylvain; Barnes, Gareth et al. (2018) IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin Neurophysiol 129:1720-1747
Van de Bittner, Genevieve C; Van de Bittner, Kyle C; Wey, Hsiao-Ying et al. (2018) Positron Emission Tomography Assessment of the Intranasal Delivery Route for Orexin A. ACS Chem Neurosci 9:358-368

Showing the most recent 10 out of 1099 publications