This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The evolution of plant forms from an aquatic to a land base was accompanied by formation of a vast plethora of phenolic components in the vascular plants, of which the lignins, lignans and monoterpene are the most abundant. Together they play important roles in plant defense and cell wall reinforcement, such as with the lignans having antimicrobial, antifungal, antiviral and antioxidant properties, whereas the lignins have structural roles in support of vascular apparatus integrity. Some lignans and monoterpene derivatives find widespread application in cancer treatment, e.g., the podophyllotoxin derivatives, teniposide, etoposide, etopohos and taxol which are used in treatment of germinal testicular and small cell lung cancers, and for certain forms of leukemia. Others,such as enterodiol/enterolactone, are believed to have cancer-preventing properties and are formed through dietary ingestion of lignans (and possibly lignin) precursors. The goal of this project is thus to define the structure function relationships of these key proteins and enzymes in lignan, lignin and monolignol biosynthesis through high resolution X-ray structural analyses. We describe and compare what is now known about the mechanistic (regiospecificity and enantiospecificity) basis of the lignan pathway enzymes, pinoresinol-lariciresinol reductase and secoisolariciresinol dehydrogenase as well as of various monolignol pathway enzymes (e.g., cinnamyl alcohol dehydrogenase, arylpropenal double bond reductase, cinnamoyl CoA reductase, etc.) The information gained from these studies will be very useful for exploring the regulation of phenylpropanoid biosynthesis for ecological plant protection, and for the industrial-scale regiospecific and stereospecific synthesis of these pharmacologically active substances.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
3P41RR015301-05S1
Application #
7369556
Study Section
Special Emphasis Panel (ZRG1)
Project Start
2005-06-01
Project End
2007-05-31
Budget Start
2005-06-01
Budget End
2007-05-31
Support Year
5
Fiscal Year
2006
Total Cost
$3,995
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Chen, Wenyang; Mandali, Sridhar; Hancock, Stephen P et al. (2018) Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition. Elife 7:
Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas et al. (2018) Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 115:E6457-E6466
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Uppalapati, Maruti; Lee, Dong Jun; Mandal, Kalyaneswar et al. (2016) A Potent d-Protein Antagonist of VEGF-A is Nonimmunogenic, Metabolically Stable, and Longer-Circulating in Vivo. ACS Chem Biol 11:1058-65
Mandal, Kalyaneswar; Dhayalan, Balamurugan; Avital-Shmilovici, Michal et al. (2016) Crystallization of Enantiomerically Pure Proteins from Quasi-Racemic Mixtures: Structure Determination by X-Ray Diffraction of Isotope-Labeled Ester Insulin and Human Insulin. Chembiochem 17:421-5
Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar et al. (2016) Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR. Chembiochem 17:415-20
Ardiccioni, Chiara; Clarke, Oliver B; Tomasek, David et al. (2016) Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis. Nat Commun 7:10175
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94

Showing the most recent 10 out of 407 publications