This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Riboswitches are regulatory RNAs that recognize specific small molecules, usually key metabolites, and """"""""switch"""""""" downstream gene expression on or off at either the transcriptional or translational level. The discovery of these short cis- acting RNA elements has drastically changed our understanding of genetic regulatory mechanisms. Riboswitches are especially prevalent in Gram-positive bacteria, exemplified by Bacillus subtilis as a model organism, but are also found to control essential genes in important pathogens such as Bacillus anthracis, Staphylococcus, Enterococcus, Streptococcus, Listeria, Clostridium, and Mycobacterium. This and other characteristics have attracted increasing attention to riboswitch- mediated regulation. The three distinct classes of S-adenosyl methionine (SAM) riboswitches are the most commonly found riboswitch classes in nature. These RNAs represent three independent evolution solutions to achieve specific SAM recognition. We seek to determine the crystal structures of these SAM riboswitches in different functional states and bound to different SAM analogs in order to understand their ligand-induced gene regulatory mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR015301-07
Application #
7955151
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2009-04-01
Project End
2010-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
7
Fiscal Year
2009
Total Cost
$17,138
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Chen, Wenyang; Mandali, Sridhar; Hancock, Stephen P et al. (2018) Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition. Elife 7:
Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas et al. (2018) Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 115:E6457-E6466
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94
AhYoung, Andrew P; Koehl, Antoine; Vizcarra, Christina L et al. (2016) Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci 25:689-701
Hancock, Stephen P; Stella, Stefano; Cascio, Duilio et al. (2016) DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 11:e0150189
Kattke, Michele D; Chan, Albert H; Duong, Andrew et al. (2016) Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 11:e0167763
Jorda, J; Leibly, D J; Thompson, M C et al. (2016) Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Chem Commun (Camb) 52:5041-4

Showing the most recent 10 out of 407 publications