This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Viral infections cause disease in both humans and animals, leading to widespread morbidity, hospitalization and deaths each year. Paramyxoviruses and herpesviruses are both enveloped viruses, requiring a membrane fusion step during the entry of the virus into targeted cells. For many paramyxoviruses, two proteins on the virus surface, the hemagglutinin/neuraminidase (HN) and the fusion (F) protein are responsible for receptor binding and membrane fusion during entry into cells. HN binding to sialic acid receptors is thought to activate the F protein to undergo conformational changes. These conformational changes drive membrane fusion, by bringing the cellular and viral membranes together. However, the mechanisms by which receptor recognition and membrane fusion are coupled remain to be elucidated. For the herpesviruses, three glycoproteins are thought to form the conserved machinery for membrane fusion (the gH, gL and gB proteins), while targeting to specific cells is caused by a glycoprotein that varies between different herpesviruses. We are studying the Epstein-Barr virus (EBV), a gamma-herpesvirus, and are currently working on the entry glycoproteins gB, gH, gL and gp42. For this proposal, we are focusing on the investigation of the paramyxovirus HN/H/G and F protein structures and their interactions, as well as on the structures of the EBV gH/gL, gp42 and gB proteins.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR015301-07
Application #
7955185
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2009-04-01
Project End
2010-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
7
Fiscal Year
2009
Total Cost
$4,278
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Chen, Wenyang; Mandali, Sridhar; Hancock, Stephen P et al. (2018) Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition. Elife 7:
Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas et al. (2018) Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 115:E6457-E6466
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94
AhYoung, Andrew P; Koehl, Antoine; Vizcarra, Christina L et al. (2016) Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci 25:689-701
Hancock, Stephen P; Stella, Stefano; Cascio, Duilio et al. (2016) DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 11:e0150189
Kattke, Michele D; Chan, Albert H; Duong, Andrew et al. (2016) Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 11:e0167763
Jorda, J; Leibly, D J; Thompson, M C et al. (2016) Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Chem Commun (Camb) 52:5041-4

Showing the most recent 10 out of 407 publications