This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The DNA genetic information in our cells is packaged as chromatin. The nucleosome core particle is a fundamental repeating unit of chromatin and comprises about 150 base pairs of DNA spooled around a histone protein core. Recent studies show that chromatin is not simply a repressive structure that occludes DNA, but is instead an active participant in gene regulation that associates with multiple chromatin factors and enzymes. Despite the importance of such interactions, we currently lack a structural understanding of how chromatin factors or enzymes recognize the nucleosome. To address this problem, we have reconstituted complexes containing the nucleosome core particle and several chromatin factors or enzymes, and we have grown single crystals of a chromatin factor/nucleosome core particle complex. Our goal is to determine the three-dimensional structure of these chromatin factor/nucleosome complexes to understand how the cell recognizes and interacts with its genetic information assembled as chromatin.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR015301-08
Application #
8169269
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2010-04-01
Project End
2011-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
8
Fiscal Year
2010
Total Cost
$6,970
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Chen, Wenyang; Mandali, Sridhar; Hancock, Stephen P et al. (2018) Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition. Elife 7:
Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas et al. (2018) Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 115:E6457-E6466
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Uppalapati, Maruti; Lee, Dong Jun; Mandal, Kalyaneswar et al. (2016) A Potent d-Protein Antagonist of VEGF-A is Nonimmunogenic, Metabolically Stable, and Longer-Circulating in Vivo. ACS Chem Biol 11:1058-65
Mandal, Kalyaneswar; Dhayalan, Balamurugan; Avital-Shmilovici, Michal et al. (2016) Crystallization of Enantiomerically Pure Proteins from Quasi-Racemic Mixtures: Structure Determination by X-Ray Diffraction of Isotope-Labeled Ester Insulin and Human Insulin. Chembiochem 17:421-5
Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar et al. (2016) Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR. Chembiochem 17:415-20
Ardiccioni, Chiara; Clarke, Oliver B; Tomasek, David et al. (2016) Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis. Nat Commun 7:10175
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94

Showing the most recent 10 out of 407 publications