This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. DNA rearrangement/recombination enzymes alter covalent structure of DNA, by cleaving and rejoining DNA strands. These proteins play important roles in diverse biological contexts, including viral integration into host's genome and maintenance of chromosome integrity. Using x-ray crystallography, we are studying two distinct classes of DNA rearrangement enzymes relevant to human diseases. The first class is the retroviral integrase. Retroviruses, including HIV-1 that causes AIDS, have an RNA genome that is reverse-transcribed into a linear viral DNA upon entering the host cell. Integration of this viral DNA into host's chromosome is an essential step in the lifecycle of retroviruses, and is carried out by the virally encoded integrase (IN) protein. Despite high medical relevance of retroviral IN, no structural information is available for the intact 3-domain IN protein responsible for the concerted integration of two viral DNA ends. We are using crystal structures of the functional 3-domain IN protein critically needed for a better mechanistic understanding of IN-catalyzed reactions. Using Rous Sarcoma Virus (RSV) as a model system, we have obtained a diffraction-quality crystal of 3-domain IN. Beam time is requested for higher resolution data collection and phasing experiments. The second class is the DNA resolvase involved in the maintenance of bacterial linear chromosomes. Some bacterial pathogens, including the Lyme disease spirochete Borrelia burgdorferi, have linear chromosomes with covalently closed hairpin termini. Replication of such linear chromosomes requires resolution of a catenated circular intermediate into unit-length chromosomes, which is carried out by the hairpin-forming DNA resolvase enzyme. Using Borrelia and Agrobacterium systems, we are determining crystal structures of the resolvase-DNA complexes to better understand the mechanism of DNA strand cleavages and subsequent hairpin formation.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR015301-08
Application #
8169284
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2010-04-01
Project End
2011-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
8
Fiscal Year
2010
Total Cost
$7,465
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Chen, Wenyang; Mandali, Sridhar; Hancock, Stephen P et al. (2018) Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition. Elife 7:
Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas et al. (2018) Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 115:E6457-E6466
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94
AhYoung, Andrew P; Koehl, Antoine; Vizcarra, Christina L et al. (2016) Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci 25:689-701
Hancock, Stephen P; Stella, Stefano; Cascio, Duilio et al. (2016) DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 11:e0150189
Kattke, Michele D; Chan, Albert H; Duong, Andrew et al. (2016) Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 11:e0167763
Jorda, J; Leibly, D J; Thompson, M C et al. (2016) Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Chem Commun (Camb) 52:5041-4

Showing the most recent 10 out of 407 publications