This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Nicotinamide adenine dinucleotide (NAD) is a molecule that is ubiquitous throughout all of life and is essential not only as a cofactor in redox reactions, but can also act as an adenosine diphosphate ribose (ADPR) donor. 'NAD consuming'enzymes, including ADP-ribosyl transferase, poly-ADP-ribosyl polymerase, cADP-ribose synthetase, and Sir2 protein deacetylase, can rapidly deplete cellular NAD stocks and in the process produce nicotinamide. Not only is it necessary for the NAD pool to be replenished, but the nicotinamide produced can act as a feedback inhibitor of these NAD consuming enzymes. While mammals can use nicotinamide directly to recycle NAD, most lower organisms must first convert it into nicotinic acid using a nicotinamidase enzyme. Not only does nicotinamidase play an essential role in NAD recycling, it can also act as a regulator of the NAD consuming enzymes by controlling cellular levels of nicotinamide. In addition, this enzyme has been shown to catalyze the conversion of the tuberculosis prodrug, pyrazinamide, into its active form, pyrazinoic acid. Structural studies completed to date have provided little information about substrate binding in the active site of this enzyme. A thorough study of ligand binding will provide crucial information about this enzyme's active site allowing for a deeper understanding of the mechanistic enzymology and providing essential details for structure-guided drug design efforts.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR015301-09
Application #
8361651
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2011-04-01
Project End
2012-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
9
Fiscal Year
2011
Total Cost
$1,112
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas et al. (2018) Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 115:E6457-E6466
Chen, Wenyang; Mandali, Sridhar; Hancock, Stephen P et al. (2018) Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition. Elife 7:
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94
AhYoung, Andrew P; Koehl, Antoine; Vizcarra, Christina L et al. (2016) Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci 25:689-701
Hancock, Stephen P; Stella, Stefano; Cascio, Duilio et al. (2016) DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 11:e0150189
Kattke, Michele D; Chan, Albert H; Duong, Andrew et al. (2016) Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 11:e0167763
Jorda, J; Leibly, D J; Thompson, M C et al. (2016) Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Chem Commun (Camb) 52:5041-4

Showing the most recent 10 out of 407 publications