This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The enzyme 5-lipoxygenase (5-LOX) initiates the synthesis of pro-inflammatory leukotrienes. These lipid mediators are synthesized from arachidonic acid (AA) released from the bilayer by the action of Ca2+-dependent phospholipase A2. 5-LOX activity is short-lived, and temporal control appears in part due to an intrinsic instability of the enzyme. This instability provides a mechanism for auto-regulation, preventing an over-production of pro-inflammatory leukotrienes. However, """"""""programmed obsolescence"""""""" is not common to all lipoxygenases, and stable isoforms have been identified. We address two critical aspects of control of 5-LOX activity: (1) Product specificity The substrate for 5-LOX is the polyunsaturated eicosanoid arachidonic acid. The first step of the reaction is the abstraction of hydrogen from the central carbon of a pentadiene. AA has three pentadiene moieties (and six possible sites of peroxidation, each with either R- or S- chirality). Yet animal lipoxygenases generally produce a single, regio- and stereo- specific product. We will develop a model for 5-LOX specificity that is consistent with its product specificty. (2) Programmed obsolescence """"""""Programmed obsolescence"""""""" in 5-LOX appears to have two components: structural instability and turnover-based suicide inhibition. Our data, including our stable mutant form of 5-LOX, suggest that features unique to 5-LOX result in a tenuously restrained C-terminus that contributes to 5-LOX instability. Experiments to define the molecular basis for non-turnover and turnover-based inactivation are proposed.
Showing the most recent 10 out of 407 publications