This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. In collaboration with Dr. Sushil Misra we created a program for rigorous simulation of DQC, which was successfully parallelized by means of MPI and this software now computes 1D and 2D-DQC for 6-pulse DQC pulse sequences. Independently, we have been pursuing other approaches for efficient simulation of dipolar signals as well as fitting the data from dipolar experiments, based on approaches under development for several years. The programs were written in modular form using FORTRAN90 and partially debugged. The main program is rigorous, written to simulate the outcome of a variety of pulsed dipolar experiments for both 14N and 15N nitroxides in any combination. The others are based on closed-form expressions encompassing different levels of approximation and are tailored for efficiency, making feasible dipolar signal averaging over multiple parameters, i.e. distances, orientation, etc. The ultimate goal is to write a complete suite of modules and libraries to simulate a variety of signals from multi-pulse sequences in systems of up to 2 spins and possibly more at a later stage of development.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR016292-06
Application #
7420528
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2006-09-15
Project End
2007-08-31
Budget Start
2006-09-15
Budget End
2007-08-31
Support Year
6
Fiscal Year
2006
Total Cost
$6,815
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Smith, Andrew K; Freed, Jack H (2012) Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study. Chem Phys Lipids 165:348-61
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706
Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey et al. (2012) Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies. J Am Chem Soc 134:9209-18

Showing the most recent 10 out of 72 publications