This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. In the study of membranes, there are several spectroscopic advantages when aligned membranes are available for study. One advantage is improved spectral resolution since the aligned membrane concentrates the spectral weight in a limited number of well-defined regions of the spectrum, whereas a vesicle spectrum represents a superposition of spectra corresponding to different orientations of the membrane normal relative to the external magnetic field (MOMD model). Another advantage of aligned membranes is a reduction in spectral ambiguity. In many cases substantially different sets of simulation parameters give very similar approximations of an experimental MOMD spectrum. The simulation of ESR spectra in aligned membranes, especially in the case of simultaneous fits for several orientations, is free from this ambiguity. The study of aligned membranes may provide particularly valuable information on the orientation of the nitroxide moiety relative to the membrane normal. Because all orientations of the membrane normal relative to the magnetic field are averaged in MOMD vesicle spectra, information about the orientation of the nitroxide moiety is poorly resolved. High frequency/high field spectroscopy, however, requires thin (100 micron) flat samples with B0 directed strictly perpendicular to the plane of the sample. To obtain high field spectra in an orientation different from 0 (here, the membrane normal corresponds to the sample normal) we apply microtome technique on ISDU aligned samples. A well-hydrated ISDU aligned membrane sample is cut into thin (~ 80 micron) slices where the slice normal is at a user controlled angle. 2 to 4 of these pieces, hermitically confined between two quartz microscope cover slips, form an aligned sample at a user-controlled orientation for high field ESR. We have successfully implemented this technique at 95 and 170/240GHz.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR016292-06
Application #
7420466
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2006-09-15
Project End
2007-08-31
Budget Start
2006-09-15
Budget End
2007-08-31
Support Year
6
Fiscal Year
2006
Total Cost
$7,607
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Smith, Andrew K; Freed, Jack H (2012) Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study. Chem Phys Lipids 165:348-61
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706

Showing the most recent 10 out of 72 publications