This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.An efficient computational algorithm is necessary to simulate and fit time-domain signals and the respective dipolar spectra provided by the 6-pulse sequence of DQC ESR. The challenge here is to develop an efficient computational algorithm that would not result in astronomic computation time when multiple parameters such as distances and their distributions, nitroxide orientations etc. are simultaneously varied. Also, time domain computations need to be rigorous, as opposed to the existing computational approach based on analytic approximations, which is very fast but inaccurate for distances under 15 for experimentally relevant pulse parameters. We developed a computational strategy that can account for multiple varied parameters and that would still result in acceptable computational time. The time domain computations are based on rigorous density matrix theory and account for dipole-dipole interaction during the pulses. The first milestone of this work is to provide a reliable and efficient computation of the time-domain 6-pulse DQC signal for rigid nitroxide biradicals at experimentally relevant conditions. The second milestone is to account for multiple varying parameters by efficient computation of the starting vector and the reuse of the outcome of the previous iteration step.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR016292-08
Application #
7723913
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2008-09-01
Project End
2009-08-31
Budget Start
2008-09-01
Budget End
2009-08-31
Support Year
8
Fiscal Year
2008
Total Cost
$3,071
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Smith, Andrew K; Freed, Jack H (2012) Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study. Chem Phys Lipids 165:348-61
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706

Showing the most recent 10 out of 72 publications