This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We have developed new models and software for analyzing the ESR and NMR data from macromolecules such as protein and DNA systems. In the ESR context, the new software allows a simultaneous fit of ESR spectra at different frequencies to enhance the spectral resolution to the various fitting parameters. It also allows for dynamic exchanges between conformers. When coupled with the slowly relaxing local structure (SRLS) model, the multi frequency fit outputs the local dynamics and ordering of the tether connecting the spin label to the macromolecule as well as the overall tumbling rate of the whole macromolecule complex. This approach has been applied to the study of the dynamic properties of T4 lysozyme spin labeled at several mutant sites. Currently we are conducting a more comprehensive study of T4 lysozyme dynamics at more mutant sites and more frequencies in different solvents. We are adding new features to our fitting programs. These features include (1) an asymmetric diffusion tensor for the internal motion of the spin label and (2) an internal diffusion tilt with all three Euler angles. In the second part of this subproject, we have formulated the SRLS model within the context of NMR relaxation theory to analyze macromolecule dynamics. An important assumption of the widely used model free (MF) theory in the protein NMR community is the decoupling between the two modes of motions. The dynamical coupling of the overall protein tumbling and the local motion is an important step forward towards our understanding of the protein dynamics. This approach has been successfully applied to the dynamics analyses of a few protein systems, and will be used in a NMR study by Dr David Fushman, University of Maryland, to analyze the overall and inter-domain motions in dual-domain (di-ubiquitin) system.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR016292-09
Application #
7956681
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2009-09-01
Project End
2010-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
9
Fiscal Year
2009
Total Cost
$10,865
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Smith, Andrew K; Freed, Jack H (2012) Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study. Chem Phys Lipids 165:348-61
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706

Showing the most recent 10 out of 72 publications