This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. ESR has been extensively used to study membrane structure and dynamics with the aid of spin-labeled lipid additives. By means of careful line shape analysis, one can obtain detailed information on the ordering and motion of the lipids in the membrane. Also, recent studies on membranes have shown that high-frequency ESR provides improved orientational resolution. It is certainly true that the dynamical structure of lipid membranes is very complex. The lipid molecules are locally ordered and engaged in overall reorientation. In addition, the internal motions of the chain segments around the many C-C bonds leads to complex dynamics. It could be expected that a combined study at a low frequency (9 GHz) and a high frequency (250 GHz) would enable one to distinguish between the overall motion of the lipids and the internal modes of motion affecting the local site to which the spin label is attached. We have shown this in a study on membrane vesicles composed of pure lipid (DPPC) and of lipid cholesterol in a 1:1 molar ratio using the end chain labeled lipid, 16-PC. The 250 GHz spectra represent a """"""""fast time-scale"""""""" such that the overall restricted motion of the lipid in the membrane is frozen out, but it is sensitive to the internal dynamics of the end chain. This leads to a clearer characterization of the dynamic structure of the cholesterol-rich liquid-ordered phase as compared to the liquid crystalline phase. Based on this initial work, we have extended the study to include a range of chain-labeled lipids and spin-labeled peptides at a variety of frequencies: 95, 170, and 250 GHz with our new high frequency CW spectrometers. Channel formation in aligned lipid bilayers (see this year?s center highlights) is a particularly vivid demonstration of the utility of multi-frequency ESR to unravel structure and dynamics of these complex, heterogeneous systems.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR016292-10
Application #
8172077
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2010-09-01
Project End
2011-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
10
Fiscal Year
2010
Total Cost
$4,492
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Smith, Andrew K; Freed, Jack H (2012) Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study. Chem Phys Lipids 165:348-61
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706

Showing the most recent 10 out of 72 publications