This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Glycosyl composition analysis was performed by combined gas chromatography/mass spectrometry (GC/MS) of the per-O-trimethylsilyl (TMS) derivatives of the monosaccharide methyl glycosides produced from the sample by acidic methanolysis. Methyl glycosides were first prepared from dry sample provided by the client by methanolysis in 1 M HCl in methanol at 80?C (18-22 hours), followed by re-N-acetylation with pyridine and acetic anhydride in methanol (for detection of amino sugars). The samples were then per-O-trimethylsilylated by treatment with Tri-Sil (Pierce) at 80?C (0.5 hours). [These procedures were carried out as previously described in Merkle and Poppe (1994) Methods Enzymol. 230: 1-15;York, et al. (1985) Methods Enzymol. 118:3-40.] GC/MS analysis of the TMS methyl glycosides was performed on an HP 6890 GC interfaced to a 5975b MSD, using a All Tech EC-1 fused silica capillary column (30m ? 0.25 mm ID). For glycosyl linkage analysis, the sample was permethylated, depolymerized, reduced, and acetylated;and the resultant partially methylated alditol acetates (PMAAs) analyzed by gas chromatography-mass spectrometry (GC-MS) as described by York et al (1985) Methods Enzymol. 118:3-40. Initially, an aliquot of the sample after dialysis was suspended in about 200 ul of dimethyl sulfoxide. The samples were then permethylated by the method of Ciukanu and Kerek (1984) Carbohydr. Res. 131:209-217 (treatment with sodium hydroxide and methyl iodide in dry DMSO). The sample was subjected to the NaOH base for 10 minutes then methyl iodide was added and left for 20 minutes. The base was then added for 10 minutes and finally more methyl iodided was added for 20 minutes. This addition of more methyl iodide and NaOH base was to insure complete methylation of the polymer. Following sample workup, the permethylated material was reduced by superdeuteride to reduce methyl ester of uronic acid, and then hydrolyzed using 2 M trifluoroacetic acid (2 h in sealed tube at 121?C), reduced with NaBD4, and acetylated using acetic anhydride/trifluoroacetic acid. The resulting PMAAs were analyzed on a Hewlett Packard 5890 GC interfaced to a 5970 MSD (mass selective detector, electron impact ionization mode);separation was performed on a 30 m Supelco 2330 bonded phase fused silica capillary column. MALDI MS The sample was dissolved in deionized water (1mg/ml) and 1 ul of the solution was spotted on a spot of DHB dried from acetonitrile/water (1:1), and subjected to MALDI MS on a Bruker MicroFlex Mass Spectrometer which was run in the positive mode. All masses were calibrated by malto-oligosaccharide controls run immediately before the samples.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR018502-08
Application #
8170792
Study Section
Special Emphasis Panel (ZRG1-CB-L (40))
Project Start
2010-06-01
Project End
2011-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
8
Fiscal Year
2010
Total Cost
$1,305
Indirect Cost
Name
University of Georgia
Department
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Gas-Pascual, Elisabet; Ichikawa, Hiroshi Travis; Sheikh, Mohammed Osman et al. (2018) CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem :
Sheikh, M Osman; Thieker, David; Chalmers, Gordon et al. (2017) O2 sensing-associated glycosylation exposes the F-box-combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases. J Biol Chem 292:18897-18915
Ma, Liang; Chen, Zehua; Huang, Da Wei et al. (2016) Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 7:10740
Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C et al. (2015) Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. Bioconjug Chem 26:2336-49
Li, Juan; Murtaugh, Michael P (2015) Functional analysis of porcine reproductive and respiratory syndrome virus N-glycans in infection of permissive cells. Virology 477:82-8
DePaoli-Roach, Anna A; Contreras, Christopher J; Segvich, Dyann M et al. (2015) Glycogen phosphomonoester distribution in mouse models of the progressive myoclonic epilepsy, Lafora disease. J Biol Chem 290:841-50
Dwyer, Chrissa A; Katoh, Toshihiko; Tiemeyer, Michael et al. (2015) Neurons and glia modify receptor protein-tyrosine phosphatase ? (RPTP?)/phosphacan with cell-specific O-mannosyl glycans in the developing brain. J Biol Chem 290:10256-73
Li, Juan; Tao, Shujuan; Orlando, Ron et al. (2015) N-glycosylation profiling of porcine reproductive and respiratory syndrome virus envelope glycoprotein 5. Virology 478:86-98
Tao, Shujuan; Orlando, Ron (2014) A novel method for relative quantitation of N-glycans by isotopic labeling using ยน?O-water. J Biomol Tech 25:111-7
Boccuto, Luigi; Aoki, Kazuhiro; Flanagan-Steet, Heather et al. (2014) A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 23:418-33

Showing the most recent 10 out of 104 publications