This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The overall goal of my laboratory is to understand the molecular signaling mechanisms that control tumor cell migration, invasion, and metastasis. Metastasis is a major cause of disease relapse and decreased patient survival. Recently, we developed a biochemical method to purify the leading front (lamellipodia) of migrating cells (JCB 156:725. 2002). This novel technology will allow us to identify the key regulatory proteins that facilitate lamellipodia formation, which is responsible for mediating cell invasion and metastasis. We will use monkey kidney epithelial (COS-7) and metastatic human breast adenocarcinoma cells for these studies. Initial analysis has revealed that phosphotyrosine (PY) proteins are highly activated in the lamellipodia of these cells. Pharmacological inhibition of tyrosine phosphorylation inhibits lamellipodia formation, indicating that complex signaling cascades control this process through modulation of tyrosine networks. Therefore, our objective is to characterize the PY proteins (lamellipodia phosphoproteome) responsible for lamellipodia formation and cancer cell metastasis. Lamellipodia PY proteins will be immunopurified with anti-PY antibodies or enriched for phosphopeptides using an IMAC column and then analyzed using the NCRR high sensitivity, high resolution LC-MS/MS to identify key proteins and determine the specific locations of the phosphorylated residues. Functional testing will then be performed using siRNA protein knockdown and site directed mutagenesis followed by cell-based assays and animal models of cell migration established in our laboratory. Information gained from these experiments will then be analyzed using bioinformatics and computer modeling to reveal potential phosphotyrosine networks that contribute to cancer cell metastasis. Results from our study will provide valuable information on the signals that control cell migration and metastasis and provide targets for therapeutic intervention of cancer progression.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR018522-04
Application #
7359106
Study Section
Special Emphasis Panel (ZRG1-BECM (40))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
4
Fiscal Year
2006
Total Cost
$63,044
Indirect Cost
Name
Battelle Pacific Northwest Laboratories
Department
Type
DUNS #
032987476
City
Richland
State
WA
Country
United States
Zip Code
99352
Smallwood, Heather S; Duan, Susu; Morfouace, Marie et al. (2017) Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention. Cell Rep 19:1640-1653
Wang, Hui; Barbieri, Christopher E; He, Jintang et al. (2017) Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics. J Transl Med 15:175
Sigdel, Tara K; Gao, Yuqian; He, Jintang et al. (2016) Mining the human urine proteome for monitoring renal transplant injury. Kidney Int 89:1244-52
Ibrahim, Yehia M; Baker, Erin S; Danielson 3rd, William F et al. (2015) Development of a New Ion Mobility (Quadrupole) Time-of-Flight Mass Spectrometer. Int J Mass Spectrom 377:655-662
Ream, Thomas S; Haag, Jeremy R; Pontvianne, Frederic et al. (2015) Subunit compositions of Arabidopsis RNA polymerases I and III reveal Pol I- and Pol III-specific forms of the AC40 subunit and alternative forms of the C53 subunit. Nucleic Acids Res 43:4163-78
Webb-Robertson, Bobbie-Jo M; Wiberg, Holli K; Matzke, Melissa M et al. (2015) Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. J Proteome Res 14:1993-2001
Malouli, Daniel; Hansen, Scott G; Nakayasu, Ernesto S et al. (2014) Cytomegalovirus pp65 limits dissemination but is dispensable for persistence. J Clin Invest 124:1928-44
Cox, Jonathan T; Marginean, Ioan; Kelly, Ryan T et al. (2014) Improving the sensitivity of mass spectrometry by using a new sheath flow electrospray emitter array at subambient pressures. J Am Soc Mass Spectrom 25:2028-37
Cao, Li; Toli?, Nikola; Qu, Yi et al. (2014) Characterization of intact N- and O-linked glycopeptides using higher energy collisional dissociation. Anal Biochem 452:96-102
Martin, Jessica L; Yates, Phillip A; Soysa, Radika et al. (2014) Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathog 10:e1003938

Showing the most recent 10 out of 350 publications